bmcmo

bmc messsysteme gmbh

LIBAD4

Library for Programming Interface LIBAD4

Programming Guide

Version 5.0

Cont

B I © 1Y =T T
1.1 [a1 (oo [UTe7 {lo] o ISP P SR UPPTTPPPR
1.2 (67070)Y, (o |1 & JHNRT TR UPTPPPURRPT

P2 | 453 = 1| =) 4o 3
2.1 Installation UNAEr WINAOWS®ooouiiiieeieceeeecee ettt ettt e e ee et e e vt e s aeeebeeeseeeaeeenreeeseeeaeas
2.2 Sharing the LIDIaryeee ittt e e e e e e e e e e e s nrrr e e e e e e e e e s nnnnneeaeaaeeaannns

R S = 7= 1= T 4
3.1 L =Y Tt PPNt

4 Single-Value ACQUISItION.......ueeeeeemmmmmmmmmnnnsnnnssnsssnnsssnsnsnnnnns 6
4.1 Function Description (SiNGIE VAIUES)ccceveiiiiiiiiiieeeeeeeeeeeeeteee ettt

411 = Lo o] o 1Y o

o o - o [o [0 1T TR PP PR

4.1.3 ad_get_range_COUNT ettt e e e e e e et et e e e e e e e eeeen e e e e e eeenenn e aas

414 ad_get_range iNfO ... oot e e e e e e e e e as

v 3 IR ST - Lo [l (= Tod (= (YN | PP PPOR

4.1.6 Ad_dISCrEIE_INGBA..... ettt e e e e e et ee e e e e e e et nnea e e aaaeeeeennaan 11
o A - o o | (<ot (= (Y | 1Y 2RO PUPPTTPPPR 11
o R T - o o | Lot (= (Y o 10 | PP RUPPTTPPPR 12
4.1.9 ad_dISCrete_0ULBAttt e e e e e e e e e e e e e e et er e e e e aaeeeeennaan 13
o e L = o o | £=Tod (= (Y o 10 AV PP PUPPPRPPPR 14
4111 ad_sample_t0_flOat...... oo e era e 16
4.1.12 ad_sample_t0_flOatBa........... i eraa e 16
4.1.18 ad_float 10 _SamMIPIE....... e e e e e e raaaan 17
4.1.14 ad_float_to_SamMPIEBA.......... e e e e raa e e raaaaae 18
5 I E T - o I - 1g =1 o To [[P OO PUPPRTPPPR 18
5 I LT = o I = 1g =1 o To [o U SO PUPPTRPPPR 19
A7 ad_digital_iN coeeeeeee e 19
4118 ad_diQItal_OUL ...t e et e e e e e e et e e e e e e e eeeeennaan 19
4119 ad_set_digital_liNe ...t e et e e e e e eeeenaaas 19
4.1.20 ad_get_digital_lINeo e et e e e e e e aeeeenaaas 20
4.1.21 ad_get_lINe_AIr@CHION ...coieieee e et e e et r e e e e e e eeenaaan 20
4.1.22 ad_set_lINe_dIr@CHION ..ot e et e et e e e e e e eeeenaaan 20
V3 P2 T - o o 1= V= =1 (o] o ST PR P PUPPTTPPPR 20
v 3 W2 - o o 1= o | VY=Y 1 (o] o FO PP UPPRTPPPR 21
4.1.25 ad_get_producCt _iNfO ... e et eeeee e 21

LT ToT= 1T o o =Y 22
5.1 [0} L= TP PRT PP PPPPRPTIIN 22
5.2 R Tozz Ll = 1= 10 0= (Y PSPPI 22

Seite | © BMC Messsysteme GmbH

ents

5.2.1 (S (Ul A= To JE=Tor=1 g Wo] 0 T= W0 (<11 o2 22

5.2141 SPEICHEIANEN ... 23
5.21.2 (e [=T Y o= TSP PP 24
5.2.2 SHUCE A0 _SCAN_AESC... ittt e e e e e e et et e e e e e e e eee e s e e e e aeeeenennnan 24
5.2.3 SHUCE A0 _SCaAN_Stat. ..ot eeeeeenaaas 26

LS T2 N =1 { (0 T A= Vo J =T o T oY 1< P 26
5.2.5 StrUCt @d_Cha_laYOUL......oeeeee et e e e e e e e e e e e e e e e eeeenaaan 27
5.3 MEMOINY-0ONIY SCAN....ciiiiietieeiee ettt e e e e e e e e e e e e s s aree e e e e e e s aaannrrreeaaaeeasaannrrneeeaaeeasannnnnnnes 27
5.31 STAtEN BINES SCANS....ci i 27
5.3.2 Reading out Measuring ValUES........couuueeo it e e e e a e e e e eeennaas 28
5.3.3 SIOPPING @ SCaN..cciii i 29
5.4 CONTINUOUS SC@N .ttttttttuttttuuutuaeeaunsaassssssssssesssesssssssesssnssssnnnns 30
5.41 Composition of @ RUNcoiiiiiii e 30
542 0ne Sample per RUNccoo oo 33
5.4.3 Signals with Different Storage Ratio...........cuoiiiiiiiiiiiie e 34
5.5 S To= Lo VY1 (g I gTo o =Y o o o OO PPUPUPPRTPT 35
5.51 Parameters for scan channels with triggering....... oo 35
5.6 Functions DeSCriptioN (SCAN) ...cciviiiiiiiiiiiiiieeeeeee ettt a e e e e e e e e e e e aaaaaaes 38
5.6.1 b= o) e= L A 0110 0 T T o= L o PP TPUR R PRUPPTIIN 38

SN ST - o K= =T g o= Lo U PP PUPPUTPPPR 40
5.6.3 ad_get_sample_[aYOUt e e e e eeeenaaas 40

Lo ST S - o o 1= A== T] o) (ST PP RUPPPTPPPR 41
B5.6.5 A0 0l SaMIPDIES . e e e e et e e e e e e e eeeenaaas 41
5.6.6 ad_get_Samples_fB4ot e et e e e e e e e aeeeenaaan 42
B.8.7 @O_CAIC_TUN_SIZE ..ottt e e e e e e e ee e e e e e e e e eeeeana e e e e eeeeenennaan 43

Lo oI - o e 1= Al g (=Y A U | o [P RPUPPRTPPPR 43
B5.6.9 ad_gel neXt UM _f e e et e e e e e e eeenaaan 44
5.6.10 ad_get_nNext_rUn_fB4 ... et e et e e e e e e e enenaaan 44

Lo TS 2 I - Vo I o Yo | =Tor= T g K= - L (= Y 45
SIS I 2 - Vo [=1 o] o TN o= o P 45

6 Data Acquisition SYyStems ... —————— 46
6.1 [0} L= TP PP PPPRPPTIIN 46
6.2 LAN-ADT6X / AMSA2/84-LANTEEX ...ueeeeeeieaaeeiiiiiieiee e e e eeeeiree e e e e e e s rr e e e e e e e s ssnnnnneeaa e e e e s annneneas 46
6.2.1 Channel Numbers LAN-AD16fx / AMS42/84-LANTBX ..cccceeviiiiiiiiiieieeee 46
6.2.2 Configuration of the LAN-AD16fx / AMS42/84-LANT6fX COUNLErSccevveiiiiiiiiiieeeeee e 48
6.3 PCle-BASE / PCI-BASEI / PCI-PlO ...ttt e e e e e e s snnen e e e e e e e amnnnees 51
6.3.1 Digital Ports and COUNTEISuuiiiiiiiiieaiiie e e et re e e e e e e s e e e e e e e e e s nrnne e e e e e e e asannneees 51
6.3.1.1 PCle-BASE / PCI-BASEI / PCI-PlO ...ttt seeere e seeneee s e e e 51
6.3.1.2 Configuration of the COUNTErS...........uiiiiiiiiieiiei e e e 52
6.3.2 PlUG-0N MOAUIES ...ttt e ettt e e e e e e e eee e e e e e e e eeeeeana e e e aaeeeenennnnn 54
6.3.2.1 IMADDATG/ BN ...ttt e ettt e e e e e e e e e e e e e e s s asr e e e eeeaeeaaanssneeeeeeeeesaannsrnneeaaeesaaanns 55

© BMC Messsysteme GmbH Seite Il

Overview

6.3.2.2 IMIDAT B4/l eeeeete ettt e e e et e e e e e e e s s r e e e e e e e e e e s nnrrreeeeeeeeaaannrrnneeaeeeeaanns 55
6.3.2.3 Functionsgenerator of the MDATB-4i/-8i........cceuiiiiiiiiiiiriee e 56

6.4 USB-AD / USB-AD-OEM / USB-PIO / USB-PIO-OEM.........cottiiiiiiiiiiirieee e 60
6.4.1 Key Data / Channel NUMDBers USB-AD...........ooeoiiiiiiiiiiiee e e e e e 60
6.4.2 Key Data / Channel Numbers USB-PIO(-OEM)cciiiiiiiiiiiiiiiiiicissssssess s 61
6.5 U] B i B U PERPT PR 61
6.5.1 Key Data / Channel Numbers USB-ADT4f....... .o 61
6.6 USB-ADT16f / AMSA42/84-USBiiiiiiieie e ee e e e irre e e e e e e e e e e e e e e e s s anrreeeaaaeeesannnrnes 62
6.6.1 Key Data / Channel Numbers USB-AD16f / AMS42/84-USB.........cccccceeeiiiiiiiieeeee e 63
6.7 U] O] USSP PEPRTR PR 63
6.7.1 Key Data / Channel Numbers USB-Ol16..........cooiiiiiiiiiiiee e e e 64
6.7.2 Channel NUMDErS USB-OIT6..........uuiiiiiiiiiiiiireeee e e e e e e e e e e s sirrre e e e e e e s s snnrnreeeaaaeasannnnees 64
6.7.3 Configuration of the USB-O116 COUNTEISuuiiiiiiiiiiiiiiieee e e e e e e e 64

7 15 T = 67

Seite llI © BMC Messsysteme GmbH

Overview

1 Overview

1.1 Introduction

The library LIBAD4 is a programming interface to all data acquisition systems from BMC Messsysteme
GmbH. This interface features reading and writing of single values, reading of an analog input or the output
of a channel value, for example.

Besides the input and output of single values, it is possible to run a scan with the LIBAD4. Scanning the input
channels is done in the relating driver and is time-decoupled from the application allowing for fast sampling
of the input channels without loosing any measuring values.

The LIBAD4 is provided for Windows® XP/7/8 as well as for Mac OS X, FreeBSD and Linux. That means that
cross-platform use of the DAQ systems from BMC Messsysteme GmbH is possible without having to change
the source code.

o LibadX is a 32-bit interface. If programming on a 64-bit system, the application must be created as a 32-bit application.
¢ Please note, these code extracts as well as all the other examples in this manual consciously skip any error handling

to simplify matters. Of course, this has to be realized in self-written programs.

1.2 BMC Messsysteme GmbH

BMC Messsysteme GmbH stands for innovative measuring technology made in Germany. We provide all
components required for the measuring chain, from sensor to software.

Our hardware and software components are perfectly tuned with each other to produce an extremely user-
friendly integrated system. We put great emphasis on observing current industrial standards, which facilitate
the interaction of many components.

Products by BMC Messsysteme are applied in industrial large-scale enterprises, in research and development
and in private applications. We produce in compliance with 1ISO-9000-standards because standards and
reliability are of paramount importance to us - for your profit and success.

Please visit us on the web (https://www.bmcm.de) for detailed information and latest news.

Seite 1 © BMC Messsysteme GmbH

Overview

1.3 Copyrights

The programming interface LIBAD4 with all extensions has been developed and tested with utmost care.
BMC Messsysteme GmbH does not provide any guarantee in respect of this manual, the hard- and software
described in it, its quality, its performance or fitness for a particular purpose. BMC Messsysteme GmbH is
not liable in any case for direct or indirect damages or consequential damages, which may arise from
improper operation or any faults whatsoever of the system. The system is subject to changes and alterations
which serve the purpose of technical improvement.

The programming interface LIBAD4, the manual provided with it and all names, brands, pictures, other
expressions and symbols are protected by law as well as by national and international contracts. The rights
established therefrom, in particular those for translation, reprint, extraction of depictions, broadcasting,
photomechanical or similar way of reproduction - no matter if used in part or in whole - are reserved.
Reproduction of the programs and the manual as well as passing them on to others is not permitted. lllegal
use or other legal impairment will be prosecuted by criminal and civil law and may lead to severe sanctions.

Copyright © 2014 BMC Messsysteme GmbH
Updated: 12/09/2014 Hauptstrasse 21

82216 Maisach

GERMANY

Phone: +49 8141/404180-1
Fax: +49 8141/404180-9
E-mail: info@bmcm.de

© BMC Messsysteme GmbH Seite 2

Installation

2 Installation

2.1 Installation under Windows®

Under Windows®, the LIBAD4 is implemented as "dynamic link library". The installation program copies the
library together with all the header files and the example programs to hard disc.

The 1ibad4.d11 should be copied into the relating program directory in order for the programs to access
the library.

All functions of the LIBAD4 use the calling conventions cdec/ of C. If working with the library under another

programming language than C/C++, make sure it uses the calling conventions of C for the LIBAD4 functions.

2.2 Sharing the Library

The LIBAD4 library must be installed on the target system for the provided functions to be available to an
application. Therefore, sharing the following files is expressively permitted (if the version number of your
LIBADA4 differs, it must be adapted accordingly).

libad4.d1l1l
libad4.dylib
libad4.s0.4.6.523

It is the task of the application's installation program, to install the relevant file together with the application.
The LIBAD4 SDK should certainly not be used to install the LIBAD4 library on the target machine.

Please note that all other files of the LIBAD4 SDK must not be shared!

Seite 3 © BMC Messsysteme GmbH

Basics

3 Basics

3.1 General

The functions exported by the LIBAD4 and the used constants are available to a C/C++ program by the
header file 1ibad.h.

The precise definitions of the C/C++ commands and structures described in this manual are defined in the relevant

header files.

The LIBAD4 provides two functions to open or close the connection to a data acquisition system. A DAQ
system is opened with the ad_open () function, the connection is closed with ad_close (). The following
example demonstrates the basic procedure:

Prototyp

int32 t
ad open (const char *name);

C

#include "libad.h"
int32 t adh;

adh = ad open ("usb-ad");
if (adh == -1)
{
printf ("failed to open USB-AD driver\n");
exit (1);
}

ad close (adh);

The name of the data acquisition system is passed to the function ad_open (). This string is not case-
sensitive, i.e. "usb-ad" and "USB-AD" both open the USB-AD. The function returns a handle required for all
further calls of the LIBAD4. In case of an error, =1 will be returned. On Windows®, the error number can be
retrieved with GetLastError ().

Of course, it is also possible to open several data acquisition systems at the same time. In this case,
ad_open () returns another handle for each open driver. Please see the description of the ad_open ()
function (p. 6) for detailed information.

The supported DAQ systems, the channel numbers of the inputs and outputs and the permitted ranges are
specified in chapter "Data Acquisition Systems" on page 46 and the following.

© BMC Messsysteme GmbH Seite 4

Basics

As soon as a data acquisition system has been opened, incoming measuring values at the inputs can be read
in (see "ad_discrete_in", p. 9) or output values can be set (see "ad_discrete_out", p. 12). Please see
the chapter about "Single-Value Acquisition" on page 6 for further details.

In addition to reading single measuring values, the LIBAD4 can also start a scan. In this case, several input
channels are periodically sampled and the recorded measuring values are written to a buffer. Programming
a scan is described in chapter "Scan Process" on page 22 and the following.

If single measuring values are read out, one command per query is sent to the DAQ system. When
programming a scan, one command is sent to the device at scan start only. Afterward, the DAQ system
continuously sends measuring data.

As sending a command always implies a certain latency, single values can never be read out within the same
time that is reached when programming a scan.

Seite 5 © BMC Messsysteme GmbH

4 Single-Value Acquisition
4.1 Function Description (Single Values)

| The LIBAD4 functions are thread-safe unless otherwise expressly specified in the function description.

4.1.1 ad_open

Prototyp

int32 t
ad open (const char *name);

C

#include "libad.h"
int32 t adh;

adh = ad open ("usb-ad");

if (adh == -1)
{
printf ("failed to open USB-AD\n");
exit (1);
}

ad close (adh);

The ad_open () function provides a connection to the data acquisition system by passing the name of the
device. The passed string is not case-sensitive, i.e. "pcibase" and "PCIbase" both open the PCle-BASE /
PCI-BASEII / PCI-PIO. The function returns a handle required for all further calls of the LIBADA4. In case of an
error, =1 will be returned. Under Windows®, the error number can be retrieved with GetLastError ().

Of course, it is also possible to open several data acquisition systems at the same time. In this case,
ad_open () returns another handle for each open driver.

Hardware specific information (e.g. name of DAQ system) about the supported DAQ systems are provided in
the respective chapters of the same name:

LAN-AD16fx / AMS42/84-LAN

PCle-BASE / PCI-BASEIl / PCI-PIO

MADDA16/16n / MDA16-4i/-8i

USB-AD14f / USB-AD16f / AMS42/84-USB / USB-0I16
USB-AD / USB-AD-OEM / USB-PIO / USB-PIO-OEM

The following example opens a USB-AD and a USB-PIO:

© BMC Messsysteme GmbH Seite 6

Single-Value Acquisition

C

#include "libad.h"

int32 t adhl;
int32 t adh2;

adhl ad open ("usb-ad");
adh2 = ad open ("usb-pio");

ad close (adhl);
ad close (adh2);

To open several devices of the same type, the number of the data acquisition system, separated by a colon,
is added to the name as a suffix. The following example opens two USB-AD units:

C

#include "libad.h"

int32 t adhl;
int32 t adh2;

adhl ad open ("usb-ad:0");
adh2 = ad open ("usb-ad:1");

ad close (adhl);
ad close (adh2);

Alternatively, a DAQ system can be opened with its serial number by entering the serial number with an @
character after the colon.

The following example opens the two USB-AD units with the serial numbers 157 and 158.

Seite 7 © BMC Messsysteme GmbH

Single-Value Acquisition

C

#include "libad.h"

int32 t adhl;
int32 t adh2;

adhl ad open ("usb-ad:@157");
adh2 = ad open ("usb-ad:@158");

ad close (adhl);
ad close (adh2);

4.1.2 ad_close

Prototype

int32 t
ad close (int32 t adh);

C#include "libad.h"
int32 t adh;

adh = ad open ("usb-ad");

if (adh == -1)
{
printf ("failed to open USB-AD\n");
exit (1);

ad close (adh);

The ad_close () function shuts the connection to the data acquisition system. The function returns 0 or the
relevant error number in case of an error.

4.1.3 ad_get_range_count

Prototype

int32 t
ad get range count (int32 t adh, int32 t cha, int32 t cnt);

The ad_get_range count () function returns the number of measuring ranges of the channel cha.

© BMC Messsysteme GmbH Seite 8

Single-Value Acquisition
4.1.4 ad_get_range_info

Prototype

struct ad range info
{

double min;

double max;

double res;

int bps;
char unit[24];
}i

int32 t
ad get range info (int32 t adh, int32 t cha, int32 t range,
struct ad range info *info);

C

#include "libad.h"

int32 t adh;
int32 t cnt;
int32 t cha;
struct ad range info info;

adh = ad open ("usbbase");
cha = AD CHA TYPE ANALOG IN;
rc = ad get range count (adh, cha, é&cnt);
for (i=0;1i < cnt; i++)
{

rc = ad get range info(adh, cha, i, &info);
}

ad close (adh);

The ad_get_range_info () function returns the information of the measuring range range of the channel
cha.

4.1.5 ad_discrete in

Prototype

int32 t
ad discrete in (int32 t adh, int32 t cha,
int32 t range, uint32 t *data);

Seite 9 © BMC Messsysteme GmbH

Single-Value Acquisition

C

int32 t adh;
int32 t st;
uint32 t data;

adh = ad open ("usb-ad");

st = ad discrete in (adh, AD CHA TYPE ANALOG IN|1,
0, &data)

ad close (adh);

The ad_discrete_in () function returns a single value of the specified channel. In addition to the channel
number, the channel type is also entered as parameter:

AD_CHA_TYPE_ANALOG_IN for analog inputs
AD_CHA_TYPE_ANALOG_OUT for analog outputs
AD_CHA _TYPE_DIGITAL_IO for digital channels
AD_CHA_TYPE_COUNTER for counter channels

Depending on the DAQ system, different channels are available. These are specified in chapter "Data
Acquisition Systems" (p. 46). Besides the channel number, the measuring range used for sampling the input
channel is passed to the function. This does not apply to digital channels.

For analog channels, the ad discrete_in() function returns a value between 0x00000000 and
OxffffFFEF in *data. The value 0x00000000 relates to the lower range limit, the value 0x100000000 is
the upper range limit (this value is not reached at 32-bit returning Oxf£££££££ at the maximum). The value
0x80000000 is equivalent to the middle of the range, i.e. 0.0V for a symmetric, bipolar input.

To convert such a value into a voltage value, the ad_discrete_out64 () function is provided. The auxiliary
function ad_analog_in() directly passes the sampled value as voltage.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters ((see "Data Acquisition Systems", p. 46).

© BMC Messsysteme GmbH Seite 10

Single-Value Acquisition
4.1.6 ad_discrete_in64

Prototype

int32 t
ad discrete in64 (int32 t adh, int32 t cha,
uint64 t range, uint64 t *data)

Cint32 t adh;

int32 t st;
uint64 t data;

adh = ad open ("usb-ad");

st = ad discrete in64 (adh, AD CHA TYPE ANALOG IN]|1,
0, &data)

ad close (adh);

The ad_discrete_in64 () function returns a single value of the specified channel. Besides the channel
number, the measuring range used for sampling the input channel is passed to the function. This does not
apply to digital channels.

The ad_discrete_in64 () function returns a value between 0x0000000000000000 (lower range limit) and
0x10000000000000000 (upper range limit). The entire 64-bit range is only used by special 64-bit DAQ
systems. The value 0x8000000000000000 is equivalent to the middle of the range, i.e. 0.0V for a symmetric,
bipolar input.

To convert such a value into a voltage value, the ad_sample_ to_floaté4 () function is provided. The
auxiliary function ad_analog_in () directly passes the sampled value as voltage.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.7 ad_discrete inv

Prototype

int32 t

ad discrete inv (int32 t adh, int32 t chac,
int32 t chav[], uint64 t rangev[],
uint64 t datav([]);

Seite 11 © BMC Messsysteme GmbH

Single-Value Acquisition

C

#define CHAC 3

uint64 t rangev[CHAC], datav[CHAC];
int32 t chav[CHAC], adh, 1i;

/* das Beispiel liest die 3 Kanadle der USB-PIO
*/

adh = ad open ("usb-pio");
if (adh < 0)
{
fprintf (stderr, "error: couldn't open USB-PIO\n");
return -1;

}

/* setze den range bei allen Kanilen auf 0 */
memset (rangev, 0, sizeof (*rangev));
for (i = 0; 1 < CHAC; i++)
{
/* Kanalnummer setzen */
chav[i] = AD CHA TYPE DIGITAL IO| (i+1);
/* auf Eingang setzen */
ad set line direction (adh, chav[i], Oxffffffff);
}

ad discrete inv (adh, CHAC, chav, rangev, datav);
ad close (adh);

The ad_discrete_inv () function reads chac inputs at once no matter if analog or digital. In addition to
the channel numbers, the input ranges are passed to the function.

The routine ad_discrete_inv () is processed a little bit faster normally than the repeated call of the
ad_discrete_iné4 () function in an appropriate loop.

Unlike ad_discrete_in() and ad_discrete_in64 (), channel numbers, measuring ranges and value
variables are passed to ad_discrete_inv () by arrays. The array values are set analogous to the
ad_discrete_iné4 () function.

4.1.8 ad_discrete _out

Prototype

int32 t
ad discrete out (int32 t adh, int32 t cha,
int32 t range, uint32 t data);

© BMC Messsysteme GmbH Seite 12

Single-Value Acquisition

C

int32 t adh;
int32 t st;

adh = ad open ("usb-ad");
st = ad discrete out (adh, AD CHA TYPE ANALOG OUT|1,

0, 0x80000000)

ad close (adh);

The ad_discrete_out () function sets an output. Besides the channel number, the output range is passed
to the function (only applies to DAQ systems with output ranges programmable via software). Otherwise, it
has to be ensured by means of software that the specified output range conforms to the hardware settings.

As is the case with an analog input, the value 0x00000000 of an analog output relates to the lowest output
voltage. The value 0x100000000 is the highest output voltage (this value is not reached at 32-bit so that
Oxf£E£E££££F at the maximum can be passed to ad_discrete_out()).

To convert a voltage value (float) to a digital value, which is passed to ad_discrete_out(), the
ad_float_ to_sample () function is provided. The auxiliary function ad_analog_out () directly passes
the measured value as voltage.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.9 ad_discrete_out64

Prototype

int32 t ad discrete out64 (int32 t adh, int32 t cha,
uint64 t range, uint64 t data);

Seite 13 © BMC Messsysteme GmbH

Single-Value Acquisition

C

int32 t adh;
int32 t st;
uint64 t data;

adh = ad open ("pcibase");
st = ad float to sample64 (adh,

AD CHA TYPE ANALOG OUT|1,
0, 0.0f, &data);

st

ad discrete out (adh,
AD CHA TYPE ANALOG OUT|1,
0, data)

ad close (adh);

The ad_discrete_out () function sets an output. Besides the channel number, the output range is passed

to the function (only applies to DAQ systems with output ranges programmable via software). Otherwise, it
has to be ensured by means of software that the specified output range conforms to the hardware settings.

As is the case with an analog input, the value 0x0000000000000000 of an analog output relates to the
lowest output voltage. The value 0x10000000000000000 is the highest output voltage. The entire 64-bit
range of ad_discrete_out64 () is only used by special 64-bit DAQ systems.

To convert a voltage value (float) to a digital value, which is passed to ad discrete_outé4(), the
ad_float to_sample64 () function is provided. The auxiliary function ad_analog_out () directly passes
the measured value as voltage.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.10 ad_discrete outv

Prototype

int32 t

ad discrete outv (int32 t adh, int32 t chac,
int32 t chav[], uint64 t rangev[],
uint64 t datav([]);

© BMC Messsysteme GmbH Seite 14

Single-Value Acquisition

C

#define CHAC 3

uint64 t rangev[CHAC], datav[CHAC];
int32 t chav[CHAC], adh, 1i;

/* das Beispiel setzt die 3 Digitalports der USB-PIO
* guf die Werte 1, 2 und 4 */

adh = ad open ("usb-pio");
if (adh < 0)
{
fprintf (stderr, "error: couldn't open USB-PIO\n");
return -1;

}

/* setze den range bei allen Kanilen auf 0 */
memset (rangev, 0, sizeof (*rangev));
for (i = 0; 1 < CHAC; i++)
{
/* Kanalnummer setzen */
chav[i] = AD CHA TYPE DIGITAL IO| (i+1);
/* auf Ausgang setzen */
ad set line direction (adh, chav[i], 0);
/* Wert setzen */
datav[i] = 1 << 1i;
}

ad discrete outv (adh, CHAC, chav, rangev, datav);
ad close (adh);

The ad_discrete_outv () function sets chac outputs at once no matter if analog or digital. In addition to
the channel numbers, the output ranges are passed to the function.

The routine ad_discrete_outv() is processed a little bit faster normally than the repeated call of the
ad_discrete_out64 () function in an appropriate loop.

Unlike ad_discrete_out() and ad_discrete_out6é4 (), channel numbers, output ranges and values are
passed to ad discrete outv() by arrays. The array values are set analogous to the
ad_discrete_outé4 () function.

Seite 15 © BMC Messsysteme GmbH

41.11 ad_sample_to_float

Prototype

Single-Value Acquisition

int32 t
ad sample to float (int32 t adh, int32 t cha,

int32 t range, uint32 t data

float *f);
Cint32 t adh;
int32 t st, cha, range;
uint32 t data;
float volt;
adh = ad open ("usb-ad");

cha = AD CHA TYPE ANALOG IN|1;

range = 0;
st = ad discrete in (adh, cha, range, &data)
if (st == 0)
st = ad sample to float (adh, cha, range, data,

&volt)

ad close (adh);

Converts a measuring value into the respective voltage value.

Channel number and range number depend on the DAQ hardware used and are documented in the relating

chapters (see "Data Acquisition Systems", p. 46).

41.12 ad_sample_to_float64

Prototype

int32 t
ad sample to float64 (int32 t adh, int32 t cha,

uint64 t range, uint64 t data

double *dbl):;

© BMC Messsysteme GmbH

Seite 16

Single-Value Acquisition

C

int32 t adh;

int32 t st, cha, range;
uint64 t data;

float volt;

adh = ad open ("usb-ad");

cha = AD CHA TYPE ANALOG IN|1;

range = 0;
st = ad discrete in64 (adh, cha, range, &data);
if (st == 0)

st = ad sample to float (adh, cha, range, data,

&volt) ;

ad close (adh);

Converts a measuring value into the respective voltage value.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.13 ad_float _to_sample

Prototype

int32 t

ad float to sample (int32 t adh, int32 t cha,
int32 t range, float f,
uint32 t *data);

C

int32 t adh;
int32 t st, cha, range;
uint32 t data;

adh = ad open ("usb-ad");

cha = AD CHA TYPE ANALOG OUT|1;
range = 0;

st = ad float to sample (adh, cha, range, 3.2,
&data) ;
if (st == 0)
st = ad discrete out (adh, cha, range, data);

ad close (adh);

Seite 17 © BMC Messsysteme GmbH

Single-Value Acquisition
Converts a voltage value into the respective measuring value.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.14 ad_float_to_sample64

Prototype

int32 t

ad float to sample64 (int32 t adh, int32 t cha,
uint64 t range, double dbl,
uint64 t *data);

C

int32 t adh;
int32 t st, cha, range;
uint64 t data;

adh = ad open ("usb-ad");
cha = AD CHA TYPE ANALOG OUT|1;
range = 0;

st = ad float to sample64 (adh, cha, range, 3.2,
&data)
if (st == 0)
st = ad discrete out64 (adh, cha, range, data)

ad close (adh);

Converts a voltage value into the respective measuring value.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.15 ad_analog_in

Prototype

int32 t
ad analog in (int32 t adh, int32 t cha,
int32 t range, float *volt);

This auxiliary function calls ad_discrete_in () and then converts the measured value into the voltage value
using ad_discrete_out64 (). Only analog inputs are supported, i.e. AD_CHA TYPE_ANALOG_IN|cha is
internally used as channel number.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

© BMC Messsysteme GmbH Seite 18

Single-Value Acquisition
41.16 ad_analog_out

Prototype

int32 t
ad _analog out (int32 t adh, int32 t cha,
int32 t range, float volt);

This auxiliary function converts the voltage value with ad_float to_sample() and then calls
ad_discrete_out(). Only analog outputs are supported, i.e. AD_CHA TYPE ANALOG_OUTIN|cha is
internally used as channel number.

Channel number and range number depend on the DAQ hardware used and are documented in the relating
chapters (see "Data Acquisition Systems", p. 46).

4.1.17 ad_digital_in

Prototype

int32 t
ad digital in (int32 t adh,
int32 t cha, uint32 t *data);

This auxiliary function calls ad_discrete_in() with the channel number
AD CHA _TYPE DIGITAL IO|cha.

4.1.18 ad_digital_out

Prototype

int32 t
ad digital out (int32 t adh,
int32 t cha, uint32 t data);

This auxiliary function calls ad_discrete_out() with the channel number
AD CHA _TYPE DIGITAL IO|cha.

4.1.19 ad_set_digital_line

Prototype

int32 t
ad set digital line (int32 t adh, int32 t cha,
int32 t line, uint32 t flag);

This auxiliary function reads channel AD_CHA TYPE DIGITAL IO|cha and then sets line number line
according to the parameter £lag. If £1ag is 0, the line will be reset. If £1ag is not equal to 0, the line will be
set. The first line of a digital channel starts with O.

Seite 19 © BMC Messsysteme GmbH

Single-Value Acquisition
4.1.20 ad_get_digital_line

Prototype

int32 t
ad get digital line (int32 t adh, int32 t cha,
int32 t line, uint32 t *flag);

This auxiliary function reads channel AD_CHA_TYPE DIGITAL IO|cha and then sets £lagaccording to the

line 1ine. If the line is low, £1lag will be set to 0, otherwise to 1. The first line of a digital channel starts with
0.

4.1.21 ad_get_line_direction

Prototype

int32 t
ad get line direction (int32 t adh, int32 t cha,
uint32 t *mask);

Returns a bit mask describing the direction of the digital line. Each set bit stands for an input line, each
deleted bit for an output line. Bit #0 specifies the direction of the first line of the digital port.

4.1.22 ad_set line direction

Prototype

int32 t
ad set line direction (int32 t adh, int32 t cha,
int32 t mask);

Sets the input or output direction for all lines of a digital channel cha by passing a bitmask describing the
direction of the digital line. Each set bit defines an input line, each deleted bit an output line. Bit #0 specifies
the direction of the first line of the digital port.

O0xFFFF, for example, sets all digital lines to input, 0x0000 to output.

Please note some DAQ systems do not feature changing the direction of single lines or only provide hard-
wired digital channels (e.g. digital port of USB-AD14{).

4.1.23 ad_get _version

Prototype

uint32 t
ad get version ();

Returns the version of the LIBAD4.DLL. This ID can be split with the macros AD_MAJOR VERS(),
AD_MINOR_VERS () and AD_BUILD_VERS ().

© BMC Messsysteme GmbH Seite 20

Single-Value Acquisition
4.1.24 ad_get _drv_version

Prototype

int32 t
ad get drv version (int32 t adh, uint32 t *vers);

Returns the version of the DAQ card driver the LIBAD4 is compatible with.

4.1.25 ad_get product_info

Prototype

struct ad product info

{

.uint32 t serial; /* serial number */
.uint32:t fw version; /* firmware version */
.char model[32]; /* model name */
..uint8 t res[256]; /* reserved */

}s

int32 t

ad get product info (int32 t adh, int id,
struct ad product info *info,
int32 t size);

The function ad_get_product_info () returns the serial number, firmware version, and the product name of the
DAQ system opened with ad_open.

If the parameter id = 0 is used, the information of the opened DAQ system will be returned. Using id = 1 or 2
product information of a DAQ module integrated in the DAQ system can be retrieved (e.g. MADDA16 with
PCle-BASE).

Seite 21 © BMC Messsysteme GmbH

Scan Process

5 Scan Process

5.1 Notes

Besides single-value acquisition of measuring values, the LIBAD4 can also start a scan process sampling
several input channels in a constant time period and returning the recorded measuring values in a buffer.

The LIBADA4 differs between so-called "memory-only" scans and continuous scans. A "memory-only" scan
is so short that the whole measurement data of the scans can be stored in the main memory of the PC. The
scan process is configured, started and the recorded data are provided in a buffer at the end of the scan.

A continuous scan returns the recorded measuring values to the caller block by block during the scan
process. An internal memory management of the measuring data can be activated for DAQ systems which
independantly run a scan (e.g. LAN-AD16fx / AMS42/84-LAN16fx, PCle-BASE / PCI-BASEIl / PCI-PIO with
MAD/MADDA modules, USB-AD16f / AMS42/84-USB, USB-AD14f). Alternatively, an individual memory
management can be realized. In both cases, the caller is responsible to read out and store the measuring
data from the LIBAD4 in time — otherwise it comes to an overrun of the samples and the scan process will
be aborted.

5.2 Scan Parameters

The scan process is defined by means of the two structures struct ad scan_desc() and struct
ad_scan_cha_desc. Global parameters, such as sampling period and number of measuring values, are set
in struct ad_scan_desc. The structure struct ad_scan_cha_desc specifying channel-specific data,
like channel number or trigger settings, has to be filled out for each channel to be sampled.

5.2.1 struct ad_scan_cha_desc

The following source code shows the layout of struct ad_scan_cha_desc:

C

struct ad scan cha desc
{
int32 t cha;
int32 t range;
int32 t store;
int32 t ratio;
uint32 t zero;
int8 t trg mode;

uint32 t trg par[2];
int32 t samples per run;

The elements of the structure bear the following meaning:
cha

Determines the channel number to be sampled and recorded. The channel humber depends on the
hardware and is described in chapter "Data Acquisition Systems" (see p. 46).

range
Sets the measuring range of the channel. The number of the measuring range depends on the
hardware and is described in chapter "Data Acquisition Systems" (see p. 46).

© BMC Messsysteme GmbH Seite 22

Scan Process
store

Defines together with ratio (see below) how the channel is to be stored. A detailed description of
the storage types follows in the next chapter (see "Storage Types", p. 23).

ratio
Defines the storage interval (see "Storage Types", p. 23).
zero

Determines the zero level for RMS calculation. Only required if the root mean square value of the
signal is to be stored.

trg_mode

Defines together with trg_par[] (see below) if and how this channel sets off a trigger.
trg_par[]

Defines the trigger levels.

samples per run

Is returned by the LIBAD4 containing the number of measuring values produced for this channel.

Elements of the structure which are not used or documented must necessarily be set to 0!

5.2.1.1 Storage Types
Channels can be recorded in different ways. The storage type is defined by the ratio and store elements
of the struct ad_scan_cha_desc structure.

The easiest case is to set store to AD_STORE_DISCRETE and ratio to 1. Each recorded measuring value
will be stored:

Sample a1 az as as as ae ar as ag ato ai an

Stored value ai az as as as as az as ao ao an a2

In addition to the recorded measuring value, also the mean value, minimum, maximum or RMS can be stored
across an interval. This feature is provided by the LIBAD4 by defining the following constants:

C

#define AD STORE DISCRETE
#define AD STORE AVERAGE
#define AD STORE MIN
#define AD STORE MAX
#define AD STORE_RMS

The table below illustrates the connection between the sampling rate and ratio. In this example, the
sampling rate is 2msec and the mean value of channel a is stored with 1:5 ratio (i.e. store is set to
AD_STORE_AVERAGE and ratio to 5).

Seite 23 © BMC Messsysteme GmbH

Scan Process

Sample a1 az as as as ae ar as as ato ai an

Stored value

%Zai %Zai

It is also possible to save several values created by different storage methods. The next example shows the
storage of the last recorded value and the mean value of 5 measuring values (i.e. ratio is setto 5 and store
to AD_STORE_DISCRETE |AD_STORE_AVERAGE):

Sample a1 az as as as ae ar as as ato ai an

Stored value as ao

5.2.1.2 Trigger Types

The LIBAD4 features the following triggers:

C

#define AD TRG NONE
#define AD TRG POSITIVE
#define AD TRG NEGATIVE
#define AD TRG INSIDE
#define AD TRG OUTSIDE
#define AD TRG NEVER

A trigger can be set separately for each channel. The individual trigger conditions are linked with or, i.e. the
first channel meeting the trigger condition sets off the trigger of the DAQ system.

The element trg_mode should be AD_TRG_NONE for all channels which are not supposed to trigger. If all
channels of a scan are set to AD_TRG_NONE, the scan will be carried out without trigger, i.e. the recorded
values are stored right away.

If all channels of a scan are set to AD_TRG_NEVER, no trigger is set off at all. In this case, the scan runs until
the function ad_stop_scan() is epr|C|tIy called.

The trigger conditions AD_TRG_POSITIVE (Positive Edge) and AD_TRG_NEGATIVE (Negative Edge) set off a
trigger as soon as a sample overruns or underruns a certain value defined by "Trigger level 1" (struct
ad_scan_cha_desc, parameter trg par[0]). If operating DAQ systems with 12 and 16-Bit resolution,
the values for the 16-Bit trigger level must be assigned to the lower 16-Bit of the trigger level parameter. A
"Positive Edge" trigger, for example, requires that the channel values must first be below the trigger level
before exceeding the level sets off the trigger.

The trigger conditions AD_TRG_INSIDE and AD_TRG_OUTSIDE set off a trigger as soon as a sample is within
or outside a certain range defined by "Trigger level 1" (struct ad_scan_cha_desc, parameter
trg_par[0] for minimum) and "Trigger level 2" (struct ad_scan_cha_desc parameter trg_par[1] for
maximum). In contrast to an edge trigger, only the current sample is decisive to set off a window trigger.

5.2.2 struct ad_scan_desc

The global settings of a scan procedure are specified in the struct ad_scan_desc structure looking like
that:

© BMC Messsysteme GmbH Seite 24

Scan Process

C

struct ad scan desc

{

double sample rate;

uint64 t prehist;
uint64 t posthist;
uint32 t ticks per run;
uint32 t bytes per run;
uint32 t samples per run;
uint32 t flags;

The elements of the structure bear the following meaning:
sample rate

Determines the sampling rate of the scan (in seconds). To reach 100Hz sampling rate, for example,
the value 0.01 must be used.

prehist

Sets the length of the prehistory (only if trigger is used, otherwise set to 0).
posthist

Sets the length of the posthistory.

ticks_per run

Is required for continuous scans specifying the size of the blocks used to get the measuring values
from the DAQ system. In ticks_per_run the LIBAD4 then returns the block size used in the buffer
to send the sampled values from the device.

bytes_per run

Is returned by the LIBAD4 specifying the buffer size forad_get_next_run () (in bytes) if the internal
memory management of the measuring values has not been activated.

samples per run

Is provided by the LIBAD4 specifying the number of measuring values of a buffer returned by the
ad_get_next run_ £ () function if the internal memory management of the measuring values has
not been activated.

flags

The AD_SF_SAMPLES bit in £lags defines the memory management of the measuring data. If the
AD_SF_SAMPLES bit is set, internal memory management of the measuring values will be activated..
If the AD_SF_SAMPLES bit is not set, an individual memory management must be realized.

o Elements of the structure which are not used or documented must necessarily be set to 0!

o The internal memory management of measuring values can only be used for DAQ systems which scan and store
independantly (e.g. LAN-AD16fx / AMS42/84-LAN16fx, USB-AD16f / AMS42/84-USB, USB-AD14f, PCle-BASE / PCI-
BASEII / PCI-PI0 with MAD/MADDA modules).

o If the internal memory management of the measuring values has been activated, the routine
ad poll scan_state () mustcontinuously be called. Reading out measuring values from the internal memory

is done with the routines ad _get_samples(),ad get samples_f(),0rad get samples_£64().

Seite 25 © BMC Messsysteme GmbH

Scan Process

5.2.3 struct ad_scan_state

During a running scan, the LIBAD4 returns the scan state in the struct ad_scan_state structure:

C

struct ad scan state

{
int32 t flags;
int32 t runs pending;
int64 t posthist;

}i

The elements of the structure bear the following meaning:
flags
Shows the scan state (see below).
posthist

Contains the number of measuring values after triggering. If no trigger is set, the number of currently
sampled measuring values will be passed.

runs_pending

Shows if the next RUN is ready to be read out. If this flag is not zero, the next RUN can be read out
with ad_get next run().

The scan state is passed by the £1ags element. This element can be used to find out if the trigger has already
been set off and if the scan is still running:

C

struct ad scan state state;

if (state & AD SF TRIGGER)
/* scan has triggered */

if (state & AD SF SCANNING)
/* scan is still running */

The struct ad_scan_state structure can be requested by the LIBAD4 either when reading out the
measuring values with ad_get_next run () or by explicitly calling ad_poll_scan_state().

5.2.4 struct ad_scan_pos

C

struct ad scan pos
{
uint32 t run;
uint32 t offset;
}i

© BMC Messsysteme GmbH Seite 26

Scan Process

The structure provides information about the individual scan runs.

The elements of the structure bear the following meaning:
RUN number of the scan

Offset used in the respective RUN of the scan

5.2.5 struct ad_cha_layout

C

struct ad cha layout

{
struct ad scan pos start;
int64 t prehist samples;
int64 t posthist samples;
double tO0;

The elements of the structure bear the following meaning:
Position of the first scanned measuring value
Number of measuring values before triggering
Number of measuring values after triggering

Time in seconds until the trigger event occurs

5.3 Memory-only Scan

A "memory-only" scan is started and run by calling the three functions ad start mem scan(),
ad_get next run() and ad_stop_scan(). All recorded samples of such a scan are stored in the

(physically existing) main memory of the PC.

The example code in the following chapter demonstrates how to start a scan and read out the recorded

values.

5.3.1 Starten eines Scans

To be able to start the ad_start mem_scan() function, the channels to be sampled must have been
defined first. The following example generates the channel description for two channels (analog input 1 and

analog input 3). Both channels are stored 1:1.

Seite 27

© BMC Messsysteme GmbH

Scan Process
(o}

struct ad scan cha desc chav([2];
memset (chav, 0, sizeof (chav));

chav[0].cha = AD CHA TYPE ANALOG IN|1;
[0] .store = AD STORE DISCRETE;

chav([0].ratio = 1;

chav[0].trg mode = AD TRG NONE;

chav[l].cha = AD CHA TYPE ANALOG IN|3;
chav[l].store = AD STORE DISCRETE;

chav[l].ratio = 1;
chav[l].trg mode = AD TRG NONE;

Besides that, the global scan parameters must be set inthe struct ad_scan_desc structure. The following
example sets the sampling rate to 1kHz and stores 500 sampled values (per channel).

C

struct ad scan desc sd;
memset (&sd, 0, sizeof(sd));
sd.sample rate = 0.001f;

sd.prehist = 0;
sd.posthist = 500;

Afterwards ad_start_mem scan () can be called:

C

int32 t rc;

rc = ad start mem scan (adh, &sd, 2, chav);
if (rc != 0)
return rc;

Now the scan process is running in the background and is terminated after 0.5sec (500x 1msec).

5.3.2 Reading out Measuring Values

Recorded values are read out by calling the ad_get next run() or ad_get_next_run_f£() function.
Compared to the ad_get_next_run () function returning the samples directly from the DAQ system (as
16-bit values), the ad_get _next_run f () function passes float values, which are (depending on the
measuring range) already converted into the relating voltage values. In case of a "memory-only" scan, both
functions are disabled until all measuring values have been stored (i.e. for 0.5 seconds in this case).

Both functions expect a pointer to a data buffer, which must be big enough to store the whole amount of measuring

values. The memory will be overwritten otherwise and the program will crash!

© BMC Messsysteme GmbH Seite 28

Scan Process

The minimum size of the buffer for ad_get next_run() can be determined with the bytes_per_ run
element of the struct ad_scan_desc structure. A buffer to be filled by ad get _next run £ () must
provide storage for samples per_ run float values at least.

In this case, 2 channels with 500 measuring values each are stored so that the buffer must feature a size of
1000 float values at least:

C

float samples[1000];

ASSERT (sd.samples per run <= 1000);

rc = ad get next run f (adh, NULL, NULL, samples);

After successfully calling the function, the array samples|[] is filled with the following measuring values (the
samples a; are provided by analog input 1, the samples b; by analog input 3):

Time (in 0 1 2 . 498 499 0 1 2 . 498 499
msec)
Sample ai az as e Qago asoo b1 b2 bs e bage bsoo

5.3.3 Stopping a Scan

If a scan process has been started successfully (return value of ad_start_scan() was 0), it must be
stopped with ad_stop_scan.

The scan must also be stopped if an error has been returned upon reading out measuring values. As long as
the scan has not been stopped, a new scan cannot be started.

Seite 29 © BMC Messsysteme GmbH

Scan Process

The following example code stops the scan:

C

int32 t scan result;

rc = ad stop scan (adh, &scan result);

5.4 Continuous Scan

Besides the "memory-only" scan, the LIBAD4 features the continuous scan. In this case, the measuring
values are passed to the caller block by block enabling him to analyze the measuring values during the scan
and to make adjustments if necessary.

The measuring values are grouped in "RUNs", which are passed to the caller by the LIBAD4. The humber of
measuring values belonging to a RUN can be defined by the caller with the ticks per run element of the
struct ad_scan_desc structure.

This parameter can also take extreme values. If ticks per run is set to 1, for example, the LIBAD4
generates one RUN per measured value. On the other hand, this configuration only allows very small sampling
rates, of course.

It is the caller's responsibility to set the number of samples per RUN so that ad_get_next_ run() can be
called often enough to prevent an overrun of the samples. Otherwise, the scan will be aborted by the LIBAD4.

5.4.1 Composition of a RUN

The number of samples of a RUN is passed to the LIBAD4 by the ticks_per_run element of the struct
ad_scan_desc structure. The following example splits the recorded values of the scan into two RUNs with
250 samples each (per signal).

As this example shows, a continuous scan is started with ad start_scan () (unlike
ad_start mem scan())- In this case, the array ticks _per_run ofthe struct ad_scan_desc structure
must be have been defined before.

The example generates the following two RUNs during the scan, the first RUN being returned by
ad_get next_run() 250msec after scan start, the second 500msec after scan start.

© BMC Messsysteme GmbH Seite 30

Scan Process

C

int32 t rc;
struct ad scan cha desc chav[2];
struct ad

scan_desc sd;

memset (&chav, 0, sizeof (chav)):;
memset (&sd, 0, sizeof(sd)):;

chav[0].cha = AD CHA TYPE ANALOG IN|1;
chav[0].store = AD STORE DISCRETE;
chav[0].ratio = 1;

chav[0].trg mode = AD TRG NONE;

chav[1l].cha = AD CHA TYPE ANALOG IN|3;
chav[l].store = AD STORE DISCRETE;
chav[l].ratio = 1;
chav[l].trg mode = AD TRG NONE;

sd.sample rate = 0.001f;
sd.prehist = 0;
sd.posthist = 500;
sd.ticks per run = 250;

rc = ad start scan (adh, &sd, 2, chav);

if (rc != 0)
return rc;

rc = ad stop scan (adh, &scan result);

Array index

Time (in 0 1 2 e 248 249 0 1 2 . 248 249

msec)

Sample ai az as e a9 azso b1 b2 bs e b2ao b2so
RUN #0

Array index

Time (in | 250 251 252 . 498 499 250 251 252 . 498 499

msec)

Sample azs1 azs2 azs3 e Qagg asoo b2s1 bas2 bass e bago bsoo
RUN #1

Seite 31 © BMC Messsysteme GmbH

Scan Process

The following example code reads out the RUNs during a scan:

C

struct ad scan state state;
uint8 t *data, *p;

uint32 t samples, runs, run_ id;
int32 t rc;

/* alloc enough space to hold all those runs */
samples = sd.prehist + sd.posthist;

runs = (samples + sd.ticks per run-1) / sd.ticks per run;
data = malloc (runs * sd.bytes per run);
if (data == NULL)
/* error handling ... */
p = data;

state.flags = AD SF SCANNING;

while (state.flags & AD SF SCANNING)
{

rc = ad get next run (adh, &state, &run id, p);
if (rc != 0)
/* error handling ... */

printf ("got run %d (%d pending)\n",
run_id, state.runs pending);

p += sd.bytes per run;
}

rc = ad stop scan (adh, &scan result);

© BMC Messsysteme GmbH Seite 32

Scan Process

54.2 One Sample per RUN

C

struct ad scan cha desc chav[2];
struct ad scan desc sd;
int32 t rc;

memset (&chav, 0, sizeof (chav)):;
memset (&sd, 0, sizeof(sd));

chav[0].cha = AD CHA TYPE ANALOG IN|1;
chav[0].store = AD STORE DISCRETE;

chav[0].ratio = 1;
chav[0].trg mode = AD TRG NONE;

chav[1l].cha = AD CHA TYPE ANALOG IN|3;
chav[1l].store = AD STORE DISCRETE;
chav[l].ratio =1
chav[1l].trg mode

” ~e

AD TRG NONE;

sd.sample rate = 0.010f;
sd.prehist = 0;
sd.posthist = 500;
sd.ticks per run

1;

rc = ad start scan (adh, &sd, 2, chav);
if (rc !'= 0)
return rc;

If ticks_per_ runis set to 1, RUNs with one recorded value per signal are created:

The example above generates 500 RUNs with the following content:

Array index ‘ 0] ‘ 1

Time 0 0

Sample a; b
RUN #0

Array index ‘ 0] ‘ 1

Time 10 10
Sample az b,
RUN #1

Array index ‘ 0] ‘ 1

Time 4980 4980
Sample a499 bags
RUN #498

Seite 33 © BMC Messsysteme GmbH

Scan Process

Array index 0] 1

Time 4990 4990

Sample asoo bsoo
RUN #499

5.4.3 Signals with Different Storage Ratio

The two previous examples (see "One Sample per RUN", p. 33) describe the structure of a run for signals
stored with 1:1 ratio. This chapter shows an example using 1:5 storage ratio.

If a signal is stored with a ratio other than 1:1, a difference must me made between sample rate and storage
ratio. The sample rate is defined for all channels of the DAQ system by the sample_rate element of the
struct ad_scan_desc structure. The storage ratio can differ from channel to channel. It results of the
parameter ratio of the struct ad_scan_desc structure by dividing the storage ratio by ratio.

The following diagram shows a scan of two inputs with 2ms (50Hz) sampling rate. Input a is stored 1:1, input

10 1214 16 18 20 22 24 ..
as | ag | as a1 | Q12 | Q13 | ..,

[Sample Input a a|az|las|as| as |as aio

[Sample Input b by b2 | b3 |bs| bs |bes|by|bg|by| big |bi|bi|bis

IStored value Input a ay|az|as|as| a |as|ar|as|a@ | awp |au|an|as
1 1

IStored value Input b gaf ga.-

After at least one sample per channel has been stored for each RUN, the different storage ratios determine
the minimum size of a RUN.

Here the smallest possible RUN consists of five sampling pulses (ticks_per run = 5) containing five
samples of input a and the mean value of the five samples of input b:

Array index ‘ 0] ‘ 1 ‘ P ‘ 3 4

[Time (in mecs) 0|2 |4]|6
Input a ay|az|as|as| as
Input b éz b

If several sampling pulses are combined to a RUN, the stored values per signal are successively arranged
(example for ticks_per run = 250):

© BMC Messsysteme GmbH Seite 34

Scan Process

eit (in ms) 0 2 4 |...| 496 | 498 8 18 28 |...| 488 | 498

Werte ap | az | as |[...| @29 | azso %Zb,. %zb‘ %Zb,» %zb‘%zb,-

5.5 Scan with Triggering

The LIBAD4 features the possibility to scan with a trigger. In this case, the internal memory management of
the measuring values must be activated (AD_SF_SAMPLES bit of the flags element of the struct
ad_scan_desc structure is set).

The number of measuring values before triggering (prehistory) and the number of measuring values after
triggering (posthistory) is freely adjustable for the scan with the struct ad_scan_desc structure.

Besides that, a trigger condition can be defined for each channel with the struct ad_scan_cha_desc
structure. If one of the trigger conditions applies, the trigger is set off and the scan is finished after the
posthistory has expired.

Continuous reading of measuring values is possible with the command ad_poll_scan_state() also
polling the current scan state. As long as the AD_SF _SCANNING bit is set in the £1ags element of the struct
ad_scan_state structure, the scan is running. As soon as the bit AD_SF _TRIGGER is set, the scan has
triggered, i.e. at least one of the trigger conditions has been achieved.

Reading out measuring values is done with the routines ad_get_samples(), ad_get _samples f£(), or
ad_get_samples £64 (). The routine ad_get_samples () returns the measuring values directly from the
DAQ system, ad _get_samples_f () or ad_get samples_£64 () pass float or double values, which
are (depending on the measuring range) already converted into the corresponding voltage values. With these
routines, data of one scan channel in specific can be read out. Number and start position of the data to be
read out are passed when calling the function. To get information about the data memory of one measuring
channel ad_get_sample layout () is used.

The installation of the Libad4 SDK under Windows® contains a C/C++ to program a scan with triggering.

5.5.1 Parameters for scan channels with triggering

Seite 35 © BMC Messsysteme GmbH

Scan Process

uint32 t data;
int rng;
struct ad scan cha desc chav([2];

rng = 2; /* e.g. +/-5V for usb-adl6f */

/* need to ensure everything in chav is zero */
memset (&chav, 0, sizeof (chav));

chav[0].cha = AD CHA TYPE ANALOG IN | 1;

[_
chav[0].store = AD STORE DISCRETE;
chav([0].ratio = 1;
chav[0].range = rng;

#define TRIGGER VALUE 2.5

/* setup trigger for the 1st channel:
* positive trigger at the defined TRIGGER VALUE

*/
chav[0].trg mode = AD TRG POSITIVE;
rc = ad float to sample(adh, chav[0].cha, rng,

TRIGGER VALUE, &data);
/* Note: The data have to be placed in the lower 16-bit
* for all 12-bit and 16-bit devices, e.g. usb-adlé6f,
* usb-ad, madl2a, madlo6a, madl6f, im-ad25a, etc.
*/
printf ("Trigger Value %8.3f = hex 0x%04x (rc=%d)\n",
TRIGGER VALUE, data>>16, rc);
chav[0].trg par[0] = data>>16;
chav[0].trg par[l] = 0;

/* 2nd scan channel: digital */
chav[l].cha = AD CHA TYPE DIGITAL IO | 1;
chav[l].store = AD STORE DISCRETE;
chav[l].ratio = 1;

chav[l].range 0;

/* set up trigger for the digital channel:
* trigger when low state at digital line 1.
* Note:
* Does NOT trigger on a change in the digital
* state, it triggers at the digital state condition
*/
chav[l].trg mode = AD TRG DIGITAL;
/* trigger condition:

* (data and trg par[0] xor trg par[l] != 0)

*/
chav[l].trg par[0] = 0x0001; /* and mask value */
chav[l].trg par[l] = 0x0001; /* xor mask value */

© BMC Messsysteme GmbH Seite 36

Scan Process

C

struct ad scan desc sd;

memset (&sd, 0, sizeof(sd));

sd.sample rate = 0.001f;
sd.prehist = 100;
sd.posthist = 500;
sd.ticks per run = 200;

/

* Scans with trigger need the internally managed

* samples memory to be activated!

*/

sd.flags = AD SF SAMPLES;

/* start scan
*/
rc = ad start scan (adh, &sd, CHAC, chav);

if (rc < 0)
/* error */
struct ad scan state state;
state.flags = AD SF SCANNING;
while (state.flags & AD SF SCANNING)
{
rc = ad poll scan state (adh, é&state);
if (rc != 0)
/* error */

if ((state.flags & AD SF TRIGGER) == 0)
; /* before trigger */

else
; /* after trigger */

Seite 37

© BMC Messsysteme GmbH

Scan Process

/* Big enough for all data (see above)!
*/

float tmp[600];

uint32 t nval;

struct ad sample layout layout;

for (int 1 = 0; 1 < 2; 1i++)
{

/* get information about the scan channel i

*/
ad get sample layout (adh, 0, &layout);
nval = 600;

rc = ad get samples f(adh, i, AD STORE DISCRETE,
layout.start, é&nval, tmp);

printf ("\nchannel #%d", 1i);
int 3 = 0;
while (j < ((int) nval))

{

printf ("%8.3f\n", datal[j++]1);
}

5.6 Functions Description (Scan)

5.6.1 ad_start mem_scan

Prototype

int32 t

ad start mem scan (int32 t adh,
struct ad scan desc *scan_desc,
uint32 t chac,
struct ad scan cha desc *chav);

© BMC Messsysteme GmbH Seite 38

Scan Process

C

struct ad scan cha desc chav([2];
struct ad scan desc sd;
int32 t rc;

memset (&chav, 0, sizeof (chav));
memset (&sd, 0, sizeof(sd));

/* sample and store analog input #1 */
chav([0].cha = AD CHA TYPE ANALOG IN|1;
chav[0].store = AD STORE DISCRETE;
chav[0].ratio = 1;

chav[0].trg mode = AD TRG NONE;

/* sample and store analog input #3 */
chav[l].cha = AD CHA TYPE ANALOG IN|3;
chav[l].store = AD STORE DISCRETE;
chav([l].ratio = 1;

chav[l].trg mode = AD TRG NONE;

/* 1kHz, 500 samples per signal /
sd.sample rate = 0.001f;
sd.prehist = 0;

sd.posthist = 500;

rc = ad start mem scan (adh, &sd, 2, chav);
if (rc != 0)
/* error handling */

Starts a "memory-only" scan. A pointer to an element of the struct ad_scan_desc structure, the number
of channels to be scanned and an array of elements of the struct ad_scan_cha_desc structure are
passed to the function.

Due to restrictions of most of DAQ cards, it is essential to specify the input channels in ascending order in the array
chav[]. If counters and digital channels are scanned in addition to analog channels, all the analog channels must be

specified first, then all counters and finally the digital channels!

The arrays sample rate, ticks_per run, bytes per run and samples _per run of the struct
ad_scan_desc structure are recalculated according to the set parameters (see "ad_calc_run_size", p.
43).

Seite 39 © BMC Messsysteme GmbH

Scan Process
5.6.2 ad_start_scan

Prototype

int32 t

ad start scan (int32 t adh,
struct ad scan desc *scan desc,
uint32 t chac,
struct ad scan cha desc *chav);

Unlike ad_start mem scan(), the ad_start_scan() function analyzes the ticks_per runelement of
the struct ad_scan_desc structure so that a scan can be divided into several RUNs (see "Continuous
Scan", p. 30).

Due to restrictions of most of DAQ cards, it is essential to specify the input channels in ascending order in the array
chav[]. If counters and digital channels are scanned in addition to analog channels, all the analog channels must be

specified first, then all counters and finally the digital channels!

The arrays sample rate, ticks_per run, bytes per run and samples_per run of the struct
ad_scan_desc structure are recalculated according to the specified parameters (see
"ad_calc_run_size", p. 43).

5.6.3 ad_get_sample_layout

Prototype

int32 t
ad get sample layout (int32 t adh, int32 t index, struct
ad sample layout *layout);

Returns information about the data memory for the scan channel index if the internal memory management
of the measuring values has been activated. The scan channel numbering starts with index = 0.

The struct ad_sample_layout structure consists of:

C

struct ad sample layout

{
uint64 t buffer start;
uint64 t start;
uint64 t prehist samples;
uint64 t posthist samples;
}i

The elements of the structure bear the following meaning:
buffer start

Position of the first measuring value in the data memory of the scan

start

© BMC Messsysteme GmbH Seite 40

Scan Process

Position of the first measuring value of the prehistory in the data memory of the scan
prehist samples

Number of available measuring values in the data memory before triggering. The prehistory ranges
from the position start to (start + prehist_samples).

posthist_samples

Number of available measuring values after triggering. The posthistory ranges from the position
(start + prehist_samples) to (start + prehist_samples + posthist_samples).

The internal memory management of measuring values (AD_SF_SAMPLES bit of the £1ags element is set in the

struct ad_scan_desc) must be activated to use this routine.

5.6.4 ad_get_samples

Prototype

int32 t
ad get samples (int32 t adh, int32 t index, int32 t type, uint64 t
offset, uint32 t *n, void *buf);

Returns the measuring values for the scan channel index as float or double values if the internal memory
management of the measuring values has been activated. The scan channel numbering starts with index =
0.

The measuring values provided by the DAQ system have been converted into the corresponding voltage
values depending on the measuring range chosen. Starting from the position of£set, n measuring values in
float format are read out of the data memory of the scan channel index. The position of£set must not be
smaller than buffer_ start, the element of the struct ad get sample_layout structure.

The number of read-out measuring values is returned by the parameter n. The parameter type decides which

data of the data memory are written to the provided array buf. Only data types (Discrete, Minimum,

Maximum, etc) can be extracted that have been specified when selecting the storage mode (store element

of struct ad_scan_desc) of the scan channel.

o The function expects a pointer to a data buffer. It must be big enough to store all measuring values. The memory will
be overwritten otherwise and the program will crash!

¢ The internal memory management of measuring values (AD_SF_SAMPLES bit of the flags element is set in the Fehler!

Verweisquelle konnte nicht gefunden werden.) must be activated to use this routine.

5.6.5 ad_get_samples_f

Prototype

int32 t
ad get samples f (int32 t adh, int32 t index, int32 t type, uint64 t
offset, uint32 t *n, float *buf);

Seite 41 © BMC Messsysteme GmbH

Scan Process

Returns the measuring values for the scan channel index as float or double values if the internal memory
management of the measuring values has been activated. The scan channel numbering starts with index =
0.

The measuring values provided by the DAQ system have been converted into the corresponding voltage
values depending on the measuring range chosen. Starting from the position of£set, n measuring values in
float format are read out of the data memory of the scan channel index. The position of£set must not be
smaller than buffer_ start, the element of the struct ad get sample_layout structure.

The number of read-out measuring values is returned by the parameter n. The parameter type decides which
data of the data memory are written to the provided array buf. Only data types (Discrete, Minimum,
Maximum, etc) can be extracted that have been specified when selecting the storage mode (store element
of struct ad_scan_desc) of the scan channel.

o The function expects a pointer to a data buffer. It must be big enough to store all measuring values. The memory will
be overwritten otherwise and the program will crash!

e The internal memory management of measuring values (AD_SF_SAMPLES bit of the £1ags element is set in the
struct ad_scan_desc) must be activated to use this routine.

e The routine ad_get_samples_£64 () should be used for measuring channels with more than 16-bit memory

depth (e.g. 32-bit counter of the USB-0I16 / PCle-BASE / PCI-BASEII / PCI-PI0).

5.6.6 ad_get_samples_f64

Prototype

int32 t
ad get samples f64 (int32 t adh, int32 t index, int32 t type, uint64 t
offset, uint32 t *n, double *buf);

Returns the measuring values for the scan channel index as float or double values if the internal memory
management of the measuring values has been activated. The scan channel numbering starts with index =
0.

The measuring values provided by the DAQ system have been converted into the corresponding voltage
values depending on the measuring range chosen. Starting from the position of£set, n measuring values in
float format are read out of the data memory of the scan channel index. The position of£set must not be
smaller than buffer_start, the element of the struct ad get sample_layout structure.

The number of read-out measuring values is returned by the parameter n. The parameter type decides which

data of the data memory are written to the provided array buf. Only data types (Discrete, Minimum,

Maximum, etc) can be extracted that have been specified when selecting the storage mode (store element

of struct ad_scan_desc) of the scan channel.

o The function expects a pointer to a data buffer. It must be big enough to store all measuring values. The memory will
be overwritten otherwise and the program will crash!

e The internal memory management of measuring values (AD_SF_SAMPLES bit of the £1ags element is set in the

struct ad_scan_desc) must be activated to use this routine.

© BMC Messsysteme GmbH Seite 42

Scan Process
5.6.7 ad_calc_run_size

Prototype

int32 t

ad calc run size (int32 t adh,
struct ad scan desc *scan desc,
uint32 t chac,
struct ad scan cha desc *chav);

Calculates the arrays sample rate, ticks_per run, bytes_per run and samples_per_ run of the
struct ad_scan_desc structure according to the specified parameters.

The arrays are calculated as if calling the ad_start_scan () function, but without starting the scan process.
Like when calling the ad_start_scan () function, the calculation or adjustment proceeds as follows:

sample rate

Is set to the actually possible sampling period (most of the DAQ cards can only set the sampling
period in fixed steps).

ticks_per run

Must be adjusted accordingly so that one value of each signal at least will be stored and/or one single
RUN will fit into the internal memory of the driver.

bytes_per run
Is calculated by the LIBAD4 providing the number of bytes of the buffer for ad_get next run().
samples per run

Is calculated by the LIBAD4 providing the number of float values within a buffer for
ad_get next_run f().

The buffer size for ad_get next run_ £ () can be calculated with samples_per_ run:

C

struct ad scan desc sd;
float *data;

int32 t rc;
rc = ad calc run size (adh, &sd, 2, chav);
if (rc !'= 0)

return rc;

data = malloc (sd.samples per run * sizeof(float));

5.6.8 ad_get_next_run

Prototype

int32 t

ad get next run (int32 t adh,
struct ad scan state *state,
uint32 t *run, void *p);

Seite 43 © BMC Messsysteme GmbH

Scan Process
Returns the measuring values of a scan.

The ad_get_next_run() function returns the measuring values directly from the DAQ system (i.e. as 16-
bit or 32-bit values depending on the memory depth of the measuring channel). The lower range limit relates
to the value 0x0000, the upper range limit to the value Ox£££f or Ox£££££££Ff (more precisely, the upper
limit relates to the value 0x10000 or 0x100000000, which will not be reached).

The recorded values are returned in "network byte order", i.e. they are not in the byte order of a x86 GPU!
The function does not return as long as the samples of a RUN are not available. In a "memory-only" scan,

this means the function does not return until the end of a scan (because a "memory-only" scan stores all
samples in one single RUN).

5.6.9 ad_get_next_run_f

Prototype

int32 t

ad get next run f (int32 t adh,
struct ad scan state *state,
uint32 t *run, float *p);

Returns the measuring values of a scan as float values.

The values provided by the DAQ system are (depending on the measuring range) converted into the
corresponding voltage values.

The function does not return as long as the measuring values of a RUN are not available. In a "memory-only"
scan, this means the function does not return until the end of a scan (because a "memory-only" scan stores
all samples in one single RUN).

The routine ad_get_next_run_f64() should be used for
measuring channels with more than 16-bit memory depth (e.g. 32-
bit counter of the Fehler! Verweisquelle konnte nicht gefunden werden. / PCle-BASE / PCI-BASEII / PCI-PI0).

5.6.10 ad_get_next_run_f64

Prototype

int32 t

ad get next run f64 (int32 t adh,
struct ad scan state *state,
uint32 t *run, double *p);

Returns the measuring values of a scan as float values.

The values provided by the DAQ system are (depending on the measuring range) converted into the
corresponding voltage values.

The function blocks until the measuring values of a run have arrived. This means that for a "memory-only
scan" the function blocks till the end of the scan (because a "memory-only" scan saves all measuring values
in one run).

© BMC Messsysteme GmbH Seite 44

Scan Process
5.6.11 ad_poll_scan_state

Prototype

int32 t
ad poll scan state (int32 t adh,
struct ad scan state *state);

Returns the current scan state like calling the ad_get_next run () function. Unlike ad_get_next run(),
this function does not block.

If the internal memory management of the measuring data has be activated (AD_SF_SAMPLES bit of the flags element
in the Fehler! Verweisquelle konnte nicht gefunden werden. structure is set) the routine ad_poll_scan_state() must

continuously be called.

5.6.12 ad_stop_scan

Prototype

int32 t
ad stop_scan (int32 t adh, int32 t *scan result);

Finishes the scan. The result of the scan is passed in scan_result (e.g. an error number if the scan has
been aborted because of an overrun).

If a scan process has successfully been started (return value of Fehler! Verweisquelle konnte nicht gefunden werden.()

was 0), it must be finished with ad_stop_scan ().

Seite 45 © BMC Messsysteme GmbH

Data Acquisition Systems

6 Data Acquisition Systems

6.1 Notes

Input and output channels are identified by channel numbers in the LIBAD4. The channel number (32-bit
integer) also contains the channel type information distinguishing between analog input, analog output and
digital channel. This encoding is integrated in the highest byte of the channel number and must be combined
with the channel number itself by the "or" operator (|).

The following channel types are defined in the LIBAD4:

C

#define AD CHA TYPE ANALOG IN
#define AD CHA TYPE ANALOG OUT
#define AD CHA TYPE DIGITAL IO
#define AD CHA TYPE COUNTER

The channel numbers depend on the DAQ system used and are documented in the relating chapters. The
first analog input of a USB-AD14f, for example, is defined by the expression AD_CHA TYPE ANALOG_IN| 1.

In addition to the channel number, analog channels require information about the measuring range (or output
range) used to scan (or to output). Like the channel number, the measuring range depends on the data
acquisition system and is documented in the following chapters.

6.2 LAN-AD16fx / AMS42/84-LAN16fx

Open the LAN-AD16fx or AMS42/84-LAN16fx with the LIBAD4 by passing the string "lanbase:<ip-
addr>" or "lanbase:@<sn>" to ad_open (). Here <ip-addr> must be replaced by the relating IP address
or <sn> by the serial number of the LAN-AD16fx or AMS42/84-LAN16fx. The string
"lanbase:192.168.1.1", for example, opens the LAN device with the IP address 192.168.1.1, and the
string "lanbase: @157" opens the LAN device with the serial number 157.

Opening the device via the serial number is only supported by Windows® and Mac OS X.

LAN- 16 inputs 1..16 0 (£1.024V) 0 (x10.24V) 2 ports 1: port A
AD16fx/ 2 outputs 1.2 1 (+2.048V) (16 bit 2: port B
AMS42/84- 2 (£5.120V) each)

LAN16fx 3 (£10.240V)

6.2.1 Channel Numbers LAN-AD16fx / AMS42/84-LAN16fx

The 16 analog inputs of a LAN-AD16fx or AMS42/84-LAN16fx are addressed via the channel numbers 1-16.
The 2 analog outputs are reached via channel number 1 and 2. The 16 analog inputs are defined by the
following constants:

© BMC Messsysteme GmbH Seite 46

Data Acquisition Systems

C
#define AI1 (AD CHA TYPE ANALOG IN|0x0001)
#define AI2 (AD CHA TYPE ANALOG IN|0x0002)

#define AI16 (AD CHA TYPE ANALOG IN|0x0010)

The two analog output channels of a LAN-AD16fx and AMS42/84-LAN16fx are addressed by the following
constants:

C
#define AO1l (AD CHA TYPE ANALOG OUT|0x0001)
#define AO2 (AD CHA TYPE ANALOG OUT|0x0002)

The LAN-AD16fx or AMS42/84-LAN16fx provides two 16-bit digital ports. The digital ports are bidirectional
and are configured in groups of 8 (see "ad_set_line_direction", p. Fehler! Textmarke nicht definiert.).
After boot-up, the first port is set to input, the second to output. The following constants result:

C

#define DIO1 (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

Besides that, the LAN-AD16fx or AMS42/84-LAN16fx features three 32-bit counter inputs. They can be used
in different operating modes and must be configured via software before use (see"Configuration of the LAN-
AD16fx / AMS42/84-LAN16fx Counters", p. 48. Therefore connect the inputs of the counter (Signal A, Signal
B, Reset) to the first three digital input lines of the LAN-AD16fx or AMS42/84-LAN16fx digital port. The
following constants are defined for the 32-bit counter input:

C

#define CNT1 (AD CHA TYPE COUNTER|0x0001)
#define CNT2 (AD CHA TYPE COUNTER|0x0002)
#define CNT3 (AD CHA TYPE COUNTER|0x0003)

Seite 47 © BMC Messsysteme GmbH

Data Acquisition Systems

6.2.2 Configuration of the LAN-AD16fx / AMS42/84-LAN16fx

Counters
Port A/1 —
. e
16:1
. L
Port A/16—
| e Counter
2:1 A Clk
Quadr.
Decoder
™ B | (optional) [|
2:1 Up/Down Reset
| F N
Port B/1 —
. % N
16:1 2:1
Port B/16 —

For counter settings, the configuration parameters are entered in the struct ad_counter_mode structure
and passed to ad_ioctl().

The following example demonstrates the general procedure: It configures the first counter of the LAN-AD16fx
and AMS42/84-LAN16fx in the "Counter" operating mode and connects counter input A with the second
input pin of the first digital port.

Prototype

int32 t
ad ioctl (int32 t adh, int32 t ioc,
void *par, int32 t size);

© BMC Messsysteme GmbH Seite 48

Data Acquisition Systems

C

#include "libad.h"

struct ad counter mode par;
int32 t adh;
int32 t st;

adh = ad open ("pcibase");

memset (&par, 0, sizeof (par));
par.cha = AD_CHA_TYPE_COUNTER\ 1;
par.mode = AD CNT COUNTER;

par.mux a = 1;

st = ad _ioctl (adh, AD SET COUNTER MODE,

&par,

ad close (adh);

sizeof (par));

The following source code shows the layout of the struct ad_counter_mode structure:

C

struct ad counter mode

{
uint32 t cha;

uint8 t mode;
uint8 t mux a;
uint8 t mux b;
uint8 t mux rst;
uintlé t flags;

The elements of the structure bear the following meaning:

Seite 49

cha

Determines the counter channel to be configured.

mode

Sets the operating mode of the counter.

AD_CNT_COUNTER

The counter channel is used as a simple counter.
Input A of the counter is used only. Each positive
edge at the input increases the counter..

AD_CNT_UPDOWN

The counter channel is used as an Up/Down counter,
i.e. the counter is bidirectional. Input A of the counter
is for the pulse input, input B for changing the
direction. If input B of the counter is low, each positive
edge at input A increases the counter. Otherwise, the
positive edge reduces the counter.

AD_CNT_QUAD_DECODER

The counter decodes the two tracks of an incremental
encoder. In this case, each edge of the two tracks is
decoded.

© BMC Messsysteme GmbH

AD_CNT_PULSE_TIME

Configures the counter for pulse time measurement.
In this case, the counter input is connected with an
internal clock (60MHz) and will be started and
stopped at each edge of input A.

mux_a, mux_b, mux rst

Data Acquisition Systems

Defines the pins of the two digital ports that are connected to the inputs of the counter. It is not
possible to connect the counter inputs with different digital ports (i.e. inputs A, B and Reset must
either all be connected with pins of port A or all with pins of port B).

mux a, mux_ b|Port/Line mux a, mux b |Port/Line
ormux rst ormux rst
0 PA/A 16 PB/A1
1 PA/2 17 PB/2
2 PA/3 18 PB/3
3 PA/4 19 PB/4
4 PA/5 20 PB/5
5 PA/6 21 PB/6
6 PA/7 22 PB/7
7 PA/8 23 PB/8
8 PA/9 24 PB/9
9 PA/10 25 PB/10
10 PA/11 26 PB/11
11 PA/12 27 PB/12
12 PA/13 28 PB/13
13 PA/14 29 PB/14
14 PA/15 30 PB/15
15 PA/16 31 PB/16
flags

Determines the operation mode of the counter inputs. The operation modes can be combined with
OR: e.g. AD_CNT_INV_RST|AD_CNT_ ENABLE RST.

Operating Mode ‘ Description

AD_CNT_INV_A

Counter input A reacts inversely.

AD_CNT_INV_B

Counter input B reacts inversely.

AD_CNT_INV_RST

Reset input reacts inversely.

AD_CNT_ENABLE_RST

Reset input is activated.

© BMC Messsysteme GmbH

Seite 50

Data Acquisition Systems

6.3 PCle-BASE / PCI-BASEII / PCI-PIO

To open the PCle-BASE, PCI-BASEII or PCI-PIO with the LIBAD4, the string "pcibase" (or "pci300") must
be passed to ad_open (). When opening the driver, no difference is made between different versions of the
PCl(e) data acquisition card.

To distinguish between several cards, the card number is explicitly used (1st card with "pcibase: 0", 2nd
card with "pcibase: 1", etc.).

A DAQ card is also directly accessible via its serial number. The card with the serial number 157 can be
addressed with "pcibase:@157", for example.

6.3.1 Digital Ports and Counters
The PCle-BASE / PCI-BASEII / PCI-PIO provide two 16-bit digital ports.

The counters of the PCl(e)-BASE cards can be used in different operating modes. They must be configured
via software before use.

Each input of the counter can be connected with any of the 16 digital inputs of the two digital port. These
settings have to be configured also before using the counter (see "Configuration of the Counters”, p. 52).

6.3.1.1 PCle-BASE / PCI-BASEII / PCI-PIO

The digital ports of the PCle-BASE / PCI-BASEIl / PCI-PIO are bidirectional and are configured in groups of
8 (see "ad_set_line_direction", p. 20). After boot-up, the first port is set to input, the second to output.
The following numbering is used:

C

#define DIO1 (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

Besides that, the PCle-BASE / PCI-BASEII, and the PCI-PIO provide three 32-bit counter inputs:

C

#define CNT1 (AD CHA TYPE COUNTER|0x0001)
#define CNT2 (AD CHA TYPE COUNTER|0x0002)
#define CNT3 (AD CHA TYPE COUNTER|0x0003)

Seite 51 © BMC Messsysteme GmbH

Data Acquisition Systems

6.3.1.2 Configuration of the Counters

Port A/1 —
. -
16:1
. L/
Port A/16—
™ 1 A Egigigh Counter
121 Quad Clk
uaar.
N — Decoder
™ B | (optional) | |
2:1 Up/Down Reset
| A
Port B/1 — p —
16:1 2:1
Port B/16 —

For counter settings, the configuration parameters are entered in the struct ad_counter_mode structure
and passed to ad_ioctl().

The following example demonstrates the general procedure: It configures the first counter of the PCle-BASE
/ PCI-BASEII / PCI-PIO in the "Counter" operating mode and connects counter input A with the second input
pin of the first digital port.

Prototype

int32 t
ad ioctl (int32 t adh, int32 t ioc,
void *par, int32 t size);

© BMC Messsysteme GmbH Seite 52

Data Acquisition Systems

C

#include "libad.h"

struct ad counter mode par;
int32 t adh;
int32 t st;

adh = ad open ("pcibase");

memset (&par, 0, sizeof (par));

par.cha = AD CHA TYPE COUNTER|1;

par.mode = AD CNT_COUNTER;

par.mux a = 1;

st = ad_ioctl (adh, AD SET COUNTER MODE,
&par, sizeof (par));

ad close (adh);

The following source code shows the layout of the struct ad_counter_mode structure:

C

struct ad counter mode

{
uint32 t cha;

uint8 t mode;
uint8 t mux a;
uint8 t mux b;
uint8 t mux rst;
uintlé t flags;

The elements of the structure bear the following meaning:

cha

Determines the counter channel to be configured.

mode

Sets the operating mode of the counter.

Operating Mode ‘ Description

AD_CNT_COUNTER The counter channel is used as a simple counter.
Input A of the counter is used only. Each positive
edge at the input increases the counter.

AD_CNT_UPDOWN The counter channel is used as an Up/Down counter,
i.e. the counter is bidirectional. Input A of the counter
is for the pulse input, input B for changing the
direction. If input B of the counter is low, each positive
edge at input A increases the counter. Otherwise, the
positive edge reduces the counter.

Seite 53 © BMC Messsysteme GmbH

AD_CNT_QUAD_DECODER

The counter decodes the two tracks of an incremental
encoder. In this case, each edge of the two tracks is
decoded.

mux_a, mux_b, mux rst

Data Acquisition Systems

Defines the pins of the two digital ports that are connected to the inputs of the counter. It is not
possible to connect the counter inputs with different digital ports (i.e. inputs A, B and Reset must
either all be connected with pins of port A or all with pins of port B).

0 PA/1 16 PB/1

1 PA/2 17 PB/2
2 PA/3 18 PB/3
3 PA/4 19 PB/4
4 PA/5 20 PB/5
5 PA/6 21 PB/6
6 PA/7 22 PB/7
7 PA/8 23 PB/8
8 PA/9 24 PB/9
9 PA/10 25 PB/10
10 PA/11 26 PB/11
11 PA/12 27 PB/12
12 PA/13 28 PB/13
13 PA/14 29 PB/14
14 PA/15 30 PB/15
15 PA/16 31 PB/16
flags

Determines the operation mode of the counter inputs.

OR: e.g. AD_CNT_INV_RST|AD_CNT_ ENABLE_RST.

AD_CNT_INV_A

Counter input A reacts inversely.

AD_CNT_INV_B

Counter input B reacts inversely.

AD_CNT_INV_RST

Reset input reacts inversely.

AD_CNT_ENABLE_RST

Reset input is activated.

6.3.2 Plug-on Modules

Up to two plug-on modules can be installed on the PCle-BASE / PCI-BASEIl / PCI-PIO. These modules
provide additional channels and are described in the following chapters.

© BMC Messsysteme GmbH

The operation modes can be combined with

Seite 54

Data Acquisition Systems

6.3.2.1 MADDA16/16n

The first analog input channel of a MADDA16/16n starts with 1. If there is a second analog input module on
the PCl(e) multi-function card (not: PCI-PIO), the first input of the second module is addressed via the number
257 (0x100+1).

The module slot on the DAQ card is not relevant. Only the module address determines the assignment of the
channels. For example, the MADDA module with the lower address is assigned to the channels 1-16 (analog
inputs, channel numbers 0x001 to 0x010) or 1 to 2 (analog outputs, channel numbers 0x001 to 0x002), the
MADDA module with the higher address to channel 17-32 (analog inputs, channel numbers 0x101 to 0x110)
or 3 to 4 (analog outputs, channel numbers 0x003 to 0x004).

MADDA16, 16 inputs 1.16 0 (£1.024V) 0 (£10.24V)
MADDA16n 2 outputs 1.2 1 (£2.048V)

2 (#5.120V)

3 (£10.240V)

The first 32 analog inputs are defined by the following constants:

C
#define AI1 (AD CHA TYPE ANALOG IN|0x0001)
#define AI2 (AD CHA TYPE ANALOG IN|0x0002)

#define AI16 (AD CHA TYPE ANALOG IN|0x0010)
/* chas 17 to 32 only if second MADDA module present */
#define AI17 (AD CHA TYPE ANALOG IN|0x0101)
#define AI18 (AD CHA TYPE ANALOG IN|0x0102)

#define AI32 (AD CHA TYPE ANALOG IN|0x0110)

With two MADDA modules on the DAQ card, the following channel numbers are assigned to the two analog
outputs per MADDAmodule:

C
#define AO1l (AD CHA TYPE ANALOG OUT|0x0001)
#define AO2 (AD CHA TYPE ANALOG OUT|0x0002)

/* chas 3 to 4 only if second MADDA module present */
#define AO3 (AD CHA TYPE ANALOG IN|0x0101)
#define AO4 (AD CHA TYPE ANALOG IN|0x0102)

6.3.2.2 MDA16-4i/-8i

The channels of a second analog output module are accessible from number 257 (0x100+1) on.

The order of the modules is only defined by the module address and not by the slot on the carrier board so
that the channels of the module with the higher address start at 0x101.

Seite 55 © BMC Messsysteme GmbH

Data Acquisition Systems

MDA16-4i 4 outputs 1.4 +10.24V 0
MDA16-8i 8 outputs 1.8 +10.24V

The definition of the channel numbers depends on the combination of the output modules on the DAQ card.
For example, the following channel numbers are assigned if using an MDA16-2i and an MDA16-4i output
module:

C

/* for example a PCI-BASEII with an MDAl6-2i (module
* address 2) and an MDAl6-4i (address 3) */

#define AO1l (AD CHA TYPE ANALOG OUT|0x0001

/* MDA16-2i with module address 2 (2 chas) /
)
#define AO2 (AD_CHA TYPE ANALOG OUT|0x0002)

/* MDAl6-41 with module address 3 (4 chas)

#define AO3 (AD CHA TYPE ANALOG OUT|0x0101)
#define AO4 (AD CHA TYPE ANALOG OUT|0x0102)
#define AO5 (AD CHA TYPE ANALOG OUT|0x0103)

()

#define RO6 AD CHA TYPE ANALOG OUT|0x0104

6.3.2.3 Functionsgenerator of the MDA16-4i/-8i

Interner Speicher
0 2047

/ \ / 13

d 5 IS

rate

AOut1 | start_addr

stop_addr

rate

AOQOut 2 | start_addr

stop_addr

The module provides a memory for 2048 measuring values, in which any signal forms can be load. Each
output channel of the MDA16-4i/-8i modules has its own controller, which can output any part of the internal
memory. The part of the memory as well as the output frequency can be set for each channel separately.

To configure the individual channels, the parameters are registered in the struct ad mda2 generator
structure and are passed by ad_ioctl().

© BMC Messsysteme GmbH Seite 56

Data Acquisition Systems

The struc ad_mda2_generator structure allows the definition of the parameters for all output channels
of a module and looks like as follows:

C

struct ad mda2 generator
{
uint32 t cha;
uint32 t chac;
struct ad mdaZ generator cha chav[16];
uint32 t ram[2048];

The elements of the structure bear the following meaning:
cha

Output channel of the module: Defines for which module the output parameters are to be modified,
e.g. for the first module on a DAQ card (AD_CHA TYPE_ANALOG_OUT | 0x0001) and for a possible
second module (AD_CHA TYPE_ANALOG_OUT|0x0101).

chac

Number of output controllers to be defined

chav

Output parameter structurs of the output controllers to be defined
ram

Memory with output values for the analog output: The analog output is linearily scaled. The value
0x00000000 of an analog output relates to the lowest output voltage, the value Ox££££££££ to the
highest output voltage. With ad_float_to_sample () a voltage value (float) can be converted into
an output value.

The struc ad_mda2 generator_cha structure allows the definition of the parameters for one output
channel and looks like as follows:

C

struct ad mda2 generator cha
{
uint32 t cha;
uint32 t range;
uint32 t rate;
uint32 t start addr;
uint32 t stop addr;

The output controller cha periodically outputs storage data from the start address start_addr to the stop
address stop_addr at the output channel considering the defined output rate rate. The respecting start
and stop addresses of the output controller must not overlap.

The elements of the structure bear the following meaning:
cha

Controller number of the output channel: Each module features one controller per analog output. The
controller number is starts with 0 (e.g. the controller numbers 0 to 3 are provided for the MDA16-4i
providing 4 output channels). The controller number O relates to analog output 1, etc.

range

Seite 57 © BMC Messsysteme GmbH

Data Acquisition Systems

Measuring range number of the output: The measuring range number of the MDA16-2/4/8i with
+10.24V range is 0.

rate

Divisor for the output frequency: The output controller is operated with an output frequency resulting
from the maximum output frequency of the module divided by rate. The maximum output frequency
of the MDA16-2/4/8i is 100kHz. If rate is 100 the output resolution would be 1kHz or 1ms per output
point.

start_addr

Start address of the module's storage range
stop_addr

Stop address of the module's storage range

The following example shows the basic procedure:

Prototype

int32 t
ad ioctl (int32 t adh, int32 t ioc,
void *par, int32 t size);

© BMC Messsysteme GmbH Seite 58

Data Acquisition Systems

C

#include "libad.h"
#include "libad mda2.h"

struct ad mda2 generator gen;

unsigned j, N = 1000;
float wv;

double PI = 3.141;
int rc;

uint32 t tmp;

memset (&gen, 0, sizeof (gen));

/* define the analog output modul
/
gen.cha = AD CHA TYPE ANALOG OUT|1;
/* using 2 output controller

*/

gen.chac = 2;

/* £ill two areas in the modul ram,
* 1st area 0..499 with a full sinus,
* 2nd area 500 to 999 with a ramp
*/
for (3 = 0;
{

v =

3 < 500; j++)

(float) (10*sin (3 * ((2.0*PI)

gen.ram[]j] = tmp;
}
for (j = 500; j < 1000; j++)
{
v = (float) (-1.0 + (j-500) * 2.0 / 500);

ad float to sample(adh, AD CHA TYPE ANALOG OUT|2, 0, v,

gen.ram[j] =

}

tmp;

gen.chav([0].cha = 0;
/* rate 10kHz (100kHz/10)
* => 50 ms duration */

with 500 points

gen.chav([0].rate = 10;
gen.chav[0].start addr = 0;
gen.chav[0].stop addr = 499;
gen.chav([l].cha = 1;

/* rate 1kHz (100kHz/100) with 500 points

* => 500 ms duration */
gen.chav[l].rate = 100;
gen.chav[l].start addr =
gen.chav[l].stop addr =

500;
999;
rc =

ad ioctl (adh, AD MDA2 SET GENERATOR,

rc = ad_ioctl (adh, AD MDA2 START GENERATOR,

&gen,

/ 500)));
ad float to sample(adh, AD CHA TYPE ANALOG OUT|1, 0, v,

&tmp) ;

&tmp) ;

sizeof (gen));

&gen, sizeof(gen));

Seite 59

© BMC Messsysteme GmbH

Data Acquisition Systems

6.4 USB-AD / USB-AD-OEM / USB-PIO / USB-PIO-OEM

Open the USB-AD or the USB-PIO/USB-PIO-OEM with the LIBAD4 by passing the string "usb-ad" or "usb-
pio" to ad_open (). To distinguish between several USB data acquisition systems, the device number is
explicitly used (e.g. 1st device with "usb-ad: 0", 2nd device with "usb-ad: 1", etc., or 1st device with "usb-
pio:0", 2nd device with "usb-pio:1", etc.). The device order results from the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation, it may happen that the
device numbers are not assigned consecutively. For example, if the second of three connected USB-AD
devices is removed, the remaining USB-AD devices are addressed with "usb-ad: 0" and "usb-ad:2".

To avoid managing the order of connecting, a device is also accessible via its serial number. The device with
the serial number 157 can be addressed with "usb-ad: @157" or "usb-pio:@157", for example.

6.4.1 Key Data / Channel Numbers USB-AD

USB-AD |16 inputs 1..16 0 (*5.12V) 0 (£5.12V) 2 Ports | 1:input (bit
1 outputs 1 (4 bit 0..3
each) 2: output
(bit 0..9)

The first analog input channel of a USB-AD starts with 1. The 16 analog inputs are defined by the following
constants:

C
#define AI1 (AD CHA TYPE ANALOG IN|0x0001)
#define AI2 (AD CHA TYPE ANALOG IN|0x0002)

#define AI16 (AD CHA TYPE ANALOG IN|0x0010)

The analog output channel of a USB-AD is addressed by the following constant:

C

#define AO1l (AD CHA TYPE ANALOG OUT|0x0001)

For compatibility reasons, the measuring range 33 can be used for analog inputs and the output range 1 for the analog

output.

The direction of the digital ports is hard-wired. The 4 lines of the first port (DIO1) are set to input, the 4 lines
of the second port (DIO2) to output.

The USB-AD-OEM provides two ports with 8 lines each. The port direction is switchable (for all 8 lines of a
port each) The first port (DIO1) iss et on input by default, the second port (DIO2) iss et on output by default.

The following constants result:

© BMC Messsysteme GmbH Seite 60

Data Acquisition Systems

C
#define DIOl (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

6.4.2 Key Data / Channel Numbers USB-PIO(-OEM)

DAQ system Digital Channel
numberr

USB-PIO, 3 ports 1.3

USB-PIO-OEM (8 bit each) (bit 0..7)

The line direction is set separately for each port in groups of eight (see "ad_set_line_ direction’, p. 20).

C

#define DIOl (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)
#define DIO3 (AD CHA TYPE DIGITAL IO|0x0003)

6.5 USB-AD14f

Open the USB-AD14f with the LIBAD4 by passing the string "usbad14£" or "usbad12£f" to ad_open ().
To distinguish between several USB data acquisition systems, the device number is explicitly used (e.g. 1st
USB-AD14f with "usbad14£:0", 2nd USB-AD14f with "usbadl4f:1", etc.). The device order results from
the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation, it may happen that the
device numbers are not assigned consecutively. For example, if the second of three connected USB-AD14f
devices is removed, the remaining USB-AD14f devices are addressed with "usbadl4f£:0" and
"usbadl4f:2".

To avoid managing the order of connecting, a device is also accessible via its serial number. The USB-AD14f
with the serial number 157 can be addressed with "usbadl14£:@157", for example.

6.5.1 Key Data / Channel Numbers USB-AD14f

DAQ Analog Channel |Measuring Output range | Digital |Direction

system number range
USB- 16 inputs 1..16 0 (+10.24V) 0 (x5.12V) 2 ports 1: input (bit
AD14f 1 output 1 (8 bit 0..7)
each) 2: output
(bit 0..7)

The first analog input channel of a USB-AD14f starts with 1. The 16 analog inputs are defined by the following
constants:

Seite 61 © BMC Messsysteme GmbH

Data Acquisition Systems

C
#define AI1 (AD CHA TYPE ANALOG IN|0x0001)
#define AI2 (AD CHA TYPE ANALOG IN|0x0002)

#define AI16 (AD CHA TYPE ANALOG IN|0x0010)

The analog output channel of a USB-AD14f is addressed by the following constant:

C

#define AO1l (AD CHA TYPE ANALOG OUT|0x0001)

The direction of the digital ports is hard-wired. The 8 (USB-AD14{) lines of the first port (DIO1) are set to input,
the 8 (USB-AD14f) or lines of the second port (DIO2) to output. The following constants result:

C
#define DIOl (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

The digital input line 1 can also be used as a counter input. The counter is addressed by the following channel
constant:

C

#define CNT1 (AD CHA TYPE COUNTER|0x0001)

6.6 USB-AD16f / AMS42/84-USB

Open the USB-AD16f or AMS42/84-USB with the LIBAD4 by passing the string "usbbase" to ad_open ().
To distinguish between several USB data acquisition systems, the device number is explicitly used (e.g. 1st
device with "usbbase: 0", 2nd device with "usbbase:1", etc.). The device order results from the order of
connecting.

As USB data acquisition systems can be plugged and unplugged during operation, it may happen that the
device numbers are not assigned consecutively. For example, if the second of three connected USB-AD16f
or AMS42/84-USB devices is removed, the remaining devices are addressed with "usbbase:0" and
"usbbase:2".

To avoid managing the order of connecting, a device is also accessible via its serial number. The device with
the serial number 157 can be addressed with "usbbase:@157", for example.

© BMC Messsysteme GmbH Seite 62

Data Acquisition Systems

6.6.1 Key Data / Channel Numbers USB-AD16f / AMS42/84-USB

USB-AD16f | 16 inputs 1.16 0 (+1.024V) 0 (*10.24V) | 2 corts | 1: input (bit
/ 2 output 1.2 1 (+2.048V) (4 bit 0..3)
AMS42/84- 2 (£5.12V) each) 2: output
USB 3 (+10.24V) (bit 0..3)

The 16 analog inputs of a USB-AD16f or AMS42/84-USB are addressed via the channel numbers 1-16. The
2 analog outputs are reached via channel number 1 and 2.

The 16 analog inputs are defined by the following constants:

C
#define AI1 (AD CHA TYPE ANALOG IN|0x0001)
#define AI2 (AD CHA TYPE ANALOG IN|0x0002)

#define AI16 (AD CHA TYPE ANALOG IN|0x0010)

The two analog output channels of a USB-AD16f or AMS42/84-USB are addressed by the following
constants:

C
#define AO1l (AD CHA TYPE ANALOG OUT|0x0001)
#define AO2 (AD CHA TYPE ANALOG OUT|0x0002)

The direction of the digital ports is hard-wired. The 4 lines of the first port (DIO1) are set to input, the 4 lines
of the second port (DIO2) to output. The following constants result:

C
#define DIOl (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

Besides that, the USB-AD16f and AMS42/84-USB features a counter input, which is defined as follows:

C

#define CNT1 (AD_CHA TYPE COUNTER|0x0001)

6.7 USB-0OI16

Open the USB-OI16 with the LIBAD4 by passing the string "usb-o0il6" to ad_open (). To distinguish
between several USB devices, the device number is explicitly used (e.g. 1st device with "usb-0i16:0", 2nd
device with "usb-0i16:1", etc.). The device order results from the order of connecting.

Seite 63 © BMC Messsysteme GmbH

Data Acquisition Systems

As USB data acquisition systems can be plugged and unplugged during operation, it may happen that the
device numbers are not assigned consecutively. For example, if the second of three connected USB-0I16
devices is removed, the remaining USB-OI16 devices are addressed with "usb-0i16:0" and "usb-
0il6:2".

To avoid managing the order of connecting, a device is also accessible via its serial number. The device with
the serial number 157 can be addressed with "usb-0i116:@157", for example.

6.7.1 Key Data / Channel Numbers USB-0OI116

USB-OI16 2 ports 1:input
(16 bit each) 2: output

6.7.2 Channel numbers USB-0OI16

The USB-0I16 provides two 16-bit digital ports. The direction of the digital ports is hard-wired. The 16 lines
of the first port (DIO1) are set to input, the 16 lines of the second port (DIO2) to output. The following constants
result:

C

#define DIOL1 (AD CHA TYPE DIGITAL IO|0x0001)
#define DIO2 (AD CHA TYPE DIGITAL IO|0x0002)

Besides that, the USB-OI16 features two 32-bit counter inputs. They can be used in different operating modes
and must be configured via software before use (see "Configuration of the USB-0I16 Counters", p. 64). The
inputs of the counter (Signal A, Signal B, Reset) are connected to the first digital input lines of the USB-0I16
digital port.

The following constants are defined for the 32-bit counter input:

C
#define CNT1 (AD CHA TYPE COUNTER|0x0001)
#define CNT2 (AD CHA TYPE COUNTER|0x0002)

6.7.3 Configuration of the USB-0I116 Counters
Epigigs Counter

1 (4) o—A Cik
Quadr.
Decoder
B | (optional) | |
12 (I5) O—— Up/Down Reset
13 (I6) O

For counter settings, the configuration parameters are entered in the struct ad_counter_mode structure
and passed to ad_ioctl().

© BMC Messsysteme GmbH Seite 64

Data Acquisition Systems

The following example demonstrates the general procedure: It configures the first counter of the USB-O116

in the "Counter" operating mode.

Prototype

int32_t

ad ioctl (int32 t adh,
int32 t size);

void *par,

int32 t ioc,

C

#include "libad.h"

struct ad counter mode par;

int32 t adh;
int32 t st;

adh = ad open ("pcibase");

memset (&par, 0, sizeof (par));

par.cha = AD CHA TYPE COUNTER|1;
par.mode = AD CNT COUNTER;

st = ad ioctl (adh, AD SET COUNTER MODE,

&par,

ad close (adh);

sizeof (par));

The elements of the structure bear the following meaning:

cha

Determines the counter channel to be configured.

mode

Sets the operating mode of the counter.

AD_CNT_COUNTER

The counter channel is used as a simple counter.
Input A of the counter is used only. Each positive
edge at the input increases the counter.

AD_CNT_UPDOWN

The counter channel is used as an Up/Down counter,
i.e. the counter is bidirectional. Input A of the counter
is for the pulse input, input B for changing the
direction. If input B of the counter is low, each positive
edge at input A increases the counter. Otherwise, the
positive edge reduces the counter.

AD_CNT_QUAD_DECODER

The counter decodes the two tracks of an incremental
encoder. In this case, each edge of the two tracks is
decoded.

AD_CNT_PULSE_TIME

Configures the counter for pulse time measurement.
In this case, the counter input is connected with an
internal clock (60MHz) and will be started and
stopped at each edge of input A.

mux_a, mux_b, mux_rst

Seite 65

© BMC Messsysteme GmbH

Data Acquisition Systems

Defines the pins of the two digital ports that are connected to the inputs of the counter. It is not
possible to connect the counter inputs with different digital ports (i.e. inputs A, B and Reset must
either all be connected with pins of port A or all with pins of port B).

mux_ a,mux b Port/Line mux_ a,mux b Port/Line
ormux rst ormux rst

0 PA/A 16 PB/A1

1 PA/2 17 PB/2
2 PA/3 18 PB/3
3 PA/4 19 PB/4
4 PA/5 20 PB/5
5 PA/6 21 PB/6
6 PA/7 22 PB/7
7 PA/8 23 PB/8
8 PA/9 24 PB/9
9 PA/10 25 PB/10
10 PA/11 26 PB/11
11 PA/12 27 PB/12
12 PA/13 28 PB/13
13 PA/14 29 PB/14
14 PA/15 30 PB/15
15 PA/16 31 PB/16

flags

Determines the operation mode of the counter inputs. The operation modes can be combined with OR:
€.g. AD_CNT_INV_RST|AD_CNT ENABLE_RST.

Operating mode
AD_CNT_INV_A

Description

Counter input A reacts inversely.

AD_CNT_INV_B

Counter input B reacts inversely.

AD_CNT_INV_RST

Reset input reacts inversely.

AD_CNT_ENABLE_RST

Reset input is activated.

© BMC Messsysteme GmbH

Seite 66

Index

7/ Index

C

Se

ad_analog_in ()eeeeeeeeeeeeeeeeeeeeee e 19
ad_analog_out () .oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 19
ad_calc_run_size ()..eeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeee 44
Ad_ClOSE () .eeeeeeeeeeee e 8
ad_digital_in ()...eeeeeeeeeeeeeeeeeeeeeeee, 20
ad_digital_out () ...cooeeeeeieeiie, 20
ad_discrete_in ()...oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 10
ad_discrete_inB4 ()......cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 11
ad_discrete_inv ()....oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 12
ad_discrete_out ()ceeeeeiiiiiiiieiie 13, 14
ad_discrete_outV ()...ceeeeeeeeeeeeeeeeeeeeeeeeeee 15
ad_float_to_sample ()ccoeveeeeeeiiieiiieieeeeeeeee 18, 19
ad_get_digital_line ().....ceeeeeeeeeeieiieeeeeeeeeeeeeeeeeee 20
ad_get_drv_version ()cceeeeeeeeeiiieieeeeeeeeeeeeeeeeee 21
ad_get_line_direction ()ccevvveeeeiiiieiieeeeeeeeeeee 21
ad_get_next_run () ..oooeeeeeeeeieeeeee 45
ad_get_next_run_f ()...ceeeeeeeeeeiie 45
ad_get_next_run_fé4 ()......cccceeeeeeeeieeiieeeeeeeeeee 46
ad_get_product_info () ...ceeveeeeeiiieiie 22
ad_get_range_count ()....cceeeeeeeieiiiiiiiieeeeeeeeeeeeeeee 8
ad_get_range_info ()....ceeeeeeeeeeiiieeieeeeeeeeeeeeeeeeeee 9
ad_get_sample_layout ()......cceeeeeeeiieiiieiiiieeeeeee 41
ad_get_samples_f () ..cccceeeeeeeiieeeeeeeeeee 43
ad_get_samples_f64 () ...cceeveeeiiiiieiiieieieeeeeee 42, 43
ad_get_version ()., 21
F=To Je o 1= o I | R 4,6
ad_poll_scan_state ()........cccceeeeeeieiiieiiieieeeeeeeeee 46
ad_sample_to_float ()cceeeeeeeeeeiiiiiiieeeee 16
ad_sample_to_floatb4 ()ccceveeeeeeeeieeeiieeeeeeeeee, 17
ad_set_digital_line ()......ccevveeeeeeeieiiieeeieeeeeeeeeeeeee 20
ad_set_line_direction ()......ccoeeveeieeiieeiieeieeeeeeeee 21
ad_start_mem_scan ()......cccceeveeiiiiiiiiiieee 40
ad_start_scan ()eeeeeeeiiiee 41
ad_stop_sCan () ...eeeveeeeeeeeieeeeeee 46
AMSA2-LANTBT...ccveiiiie e 47
AMSL2-LANTOFX .cvvniiiiiieiiiiiieieeeee e e e 47
AMSA2-USB......coeveiiiieieeee e 63
AMSBA-LANTBT....cvvniiieieiieee e 47
AMSBA-LANTOFX..cvvniiiiriiiiiiieieeee e e eeaaan 47
AMSBA-USB......ccovviiiiieieeee e 63
Analog output

ST 13,14

Set SEVEIal..u.iiiei i 15
21U (= R 5, 23, 26, 30, 44
buffer_start ... 41
bytes_per_run........ooiiiiii e, 26, 44
Case SeNSItiVItY....ccceeeeeeeeeeeeee e 4,6
(o] 1= R 23, 50, 54, 58, 66
ite 67

(o] F= Lo TR 58
Channel number 10, 11,12, 13, 14, 15, 23, 24, 47
Channel typeuveeeeeeiiieieeeeee e 47
(o] 0 F= AV SRR 58
ContiNUOUS SCaN......ccevveiieieiieeeeeee e 26, 31
Conversion

Measuring value into voltage value............... 16,17

Voltage value into measuring value................... 18
COoPYHGNT oo 2
(07010 51 1= O 51, 55, 67

Configurationcceeeveeeeiiiiiiieieiieeeeee. 49, 53, 66
Counter channelccoeeevvveiriieiiiienneeeen, 50, 54, 66

Data acquisition system

(070 1= 4,8

[F=T 0 1= T 4

(0] 1= o R 4,6

Open several different ones..............euvveeennnneee 4,6

Open several equal ONES........ccoeeeeiiiiiieeeeeeeeennne 7
Digital channel

Get direCtion.....oceeviiiieec s 21

Set directionoeeeeeiiieie e 21
[=Yo3 {[o] o PR 21
DFiVEr VEISION ...uiviiiiieic et 21
Error NUMDErovieieieee e 4, 6, 46
Firmware VErsioncoeeeeeeiieieieieeie e eeeeeeees 22
flags .ooeeeeeeeeeeee 27,51, 55, 67
FrEEBSD.....iceiiiiieee et 1
GEtLaStErMOr....cccvveeeeee e 4,6
Header file......uoiiiieiiiiiee e 4
Incremental encoderc.coceveieiiniinninnne. 51, 55, 67
Input

DireCtioN ... cevnieeeee e 21
INPUL TINE e 21
Inputs

(O] o 1Y 40, 41

© BMC Messsysteme GmbH

M

(0

P

[N N < 47
LAN-ADTOX vvuiiieiiiiiieie e eev e eeaa s 47
Channel NUMDBEY..........coiviiiiiiiiieceeeeeceeee e, 47
(0701031 1= 48, 49
Digital portsccoeuueiiii e 48
[01U) R 1
Y F= ol @ 1 G 1
MADDATG ...ccveiiieie e e e e 56
MADDATBN. c..uiiiee et ea e eaa s 56
MaXimUM ceeeee e 24
1717 2 56
(1Y 2 56
(1Y 1 56
(1Y 1 R 56
(1Y L 56
MDATB=8i ..ceerieiereieeeeeeeeee e e ea e e 56
Mean Value........c.eeeuiiiiieiic e 24
Measuring range..........cccceeevuuunnnnn. 10, 11,12, 24, 47
Informationceuueiiiiiiiii e 9
1Yo Lo] N 10, 11
(N[00 0] o T= SRR 8
Measuring value....................... 13, 14,16, 17, 18, 45
Read out......ccceviiiiiiiiiic e, 36
Memory management of the measuring values
INternalcoeoeniiiii s 36, 46
Memory-only scan........cccceeeuuucieeiinnees 29, 40, 45, 46
MESSWEI.... e 19
MiNIMUM e 24
[g o o [T 50, 54, 66
[010 = N 51, 55, 67
[0 010 o T 51, 55, 67
[0 010 €= 51, 55, 67
[N F=T 0 1SR 4
Network byte order.........ooouuiiiiiiiiiiiiiieeeeeeeee 45
Number of measuring values............... 23, 24, 27, 31
(0] 1] oY= Lo g) SRR 47
Output
D13 (o] o [T 21
ST 13, 14
Set SEVEIal..u.iiiieiiiiee e 15
OUIPUL INE .. 21
Output rangeccoeveeeeeeeeeeeeeeeeeeeeee, 13, 14, 15, 47
Overrun of the samples..........ccceeeeeeeeeeeen. 23, 31, 46
PCI cards
Serial NUMDEN.......coceviiiieie e, 52
PCI-BASET000ciiceiiiieieieeeeeee e e e eea s 52

© BMC Messsysteme GmbH

PCI-BASE3B00......ccceiiiiiuiirieeeeeeeeeiiieeeee e e eeineeeees 52
PCI-BASEII.......eeiiiiiieieeieeee e 52
(©70 1U 101 =Y R 53
Digital ports ..o 52
PCle cards
Serial NUMDEruuviiiiiiiiiiiieeeeeee 52
PCIE-BASE.......oeiiiieiiieeieeee et 52
(©701U 101 L= R 53
Digital ports ..o 52
PCI-PIO.... et 52
(©70 1U 101 =Y R 53
Digital portscoooeeiiiiiii e 52
POINtEr ... 30, 40
POSENIST ... 26, 27
posthist_samples.........ccomiiiiiiii e 42
POStISTOrY ... 26, 36
Number of measuring values............ccccceeeeeee.. 42
Prenist..... . 26
prehist_samples ..., 42
Prehistory ... 26, 36
First measuring valueccoiiiiiiiiicininnn. 42
Number of measuring values............ccccceeeeeee... 42
Product information ... 22
Product name........coouuiiiiiiii e 22
Pulse time measurement............coceuceeiiiiinnennns 51, 67

Quadrature decoder..........cceeeereeeiieennennnnnn. 51, 55, 67
(= 10 0 RPN 58
(= 1o (o [TSP 24, 59
Range limit ..., 10, 45
(= 1LY PP 59
L= 11 o TP 24
Reading out measuring valuescccccceeeeeeeeees 30
RESUI ... 46
RMS e 24
Root mean square valueccooooiiiiiiiiiininnnees 24
RUN e 27, 31
FUNS_PENAiNG....cceuuuuiiiiiiiieiieee e e e e 27
Sample rate......cooveiiiiieiiee e 35
sample_rate.........oooiiiiiiiii e 26, 44
SaAMPIES_PEer_rUNcooeeeeiiiiiee e 24,27, 44
Sampling Periodccceeeeiiiiiiiieeeee e 23,44
Sampling PUISE.........eevieeiiiiiiieeeee e 35
Sampling ratecccoeeeeeeeeeee 25, 26, 31
ST o7= o T 5,23
CoNtiNUOUS ...coveiieeiieeeee e 23, 31
First measuring valuecccoiiiiiiiiiciiinnn. 41
MemOrY-0NlYcoooiiiiiiiii e 23
Parameters ... 23
) €= g R 29
State. ... 27, 36, 46
STOP 1ttt 31
With trigger....coooeeee e 36
Serial nuUMberocevveevevennnnnes 22,52, 61, 62, 63, 65
Seite 68

Index

Single value

REad.....coveiiiiee e 10, 11
Read several.......ccccceeeiviiiiiiiiiiieieee e, 12
SPanNUNGSWErT.......cceeiiiiiiee e 19
StaAM . e 42
Start SCaAN.....civeiiiiie e 29
Start_addr ... 59
) (o] o =Tor- 1o [31, 46
StOP_addr ..o 59
Storage
INterval.......coovueiiiiiiee e 24
[= Lo TR 35
TP e 24
[(o] (TN 24
struct ad_scan_cha_descC.........ccccceeevriviiiiieniinnennne. 23
struct ad_scan_deSC.......ccueveuiiviiiiiiiiiieeeeeeaeen 26
struct ad_scan_state.........cooeevieiiiiiiiiiie 27
tiCKS_Per_run ... 26, 44
G MOAE. .. 24
LU0 T o = TR 24
THOQEr e 24, 25, 26, 27, 36
(07073 o 1170 o TR 25, 36
Negative EAgeccouuuiiiiiiiiiiii e 26
Parameterscoevveeeiiiiiiieee e 24
Positive EAge.....coouuueiiiiiiice e 26
SetliNgS e 23
WiINAOW ..ceniiieieeeeee e 26
Umrechnung
Spannungswert Messwert..........ccccceeeeeinnnneen. 19
Up/DOWN COUNEESeveeeeeeeeeeeieeeeeneeeeennnennns 51, 55, 67
USB-
(O o 1Y 61
(OS] =TT AN B 61
Channel NUMDEY..........coiviieiiiieeeeeeeeee e 61
Digital portsccoeuueiiii e 61
(O o 1Y 61
Serial NUMDEN.......cooeviiiieie e, 61
(OS] ST AN B i 2 62
Channel NUMDBEY..........oiviieiiiiie e, 62
Digital portsccoeueeiiii e 63
(O o 1Y 62
Serial NUMDEN.......cooeviiiiee e 62
Seite 69

(OS] S TN B I 62
Channel NUMDEYcccvveiiiiiiiiiieee e 62
Digital portsoooeeiiuiiiie e 63
(O] o 1Y N 62
Serial NUMDENcoveiiiiiiieeeee e 62

(OS] S TN B i 1 63
Channel NUMDEYccovveiiiiiiiieieee e 64
[O7oTU] 5| 1= R 64
Digital ports ..o 64
(O] o 1Y N 63
Serial NUMDENccveiieiiiiieeee e 63

USB-AD-OEM
Digitalportsooieeeeiie e 61

(OS] = T O] I TR 64
Channel NUMDEYcccvveiiiiiiiiiieee e 65
[O7oTU] 5| 1= G 66
Digital portscoooeeiiiiieie e 65
(O] o 1Y N 64
Serial NUMDENcoveiieiiiieeee e 65

(0S][N 61
Channel NUMDEYccovveiiiiiiiiiieee e 62
Digital ports ..o 62
DireCtioN ... ceveiieeee e 62
Serial NUMDENcovviiiiiiieeiee e 61

USB-PIO-OEMcouuiiiiiieieieeeeeeee e 61
Channel NUMDEYccovveiiiieiiieieee s 62
Digital portsoooeeiiuiiiie e 62
DireCtioN ... ceveieeeee e 62
Serial NUMDENcoveiiiiiiiieie e 61

\'}

Version
[1YY RN 21
(] ST AN B S] I 21

Voltage value.........cooomuuiiiiiiiiiiininn. 16, 17,18, 30

W
WiIndow trigger ... 26
WiNAOWS ... et ea e 1
Z
=] (o J PR 24
ZEIO IBVEL ... 24

© BMC Messsysteme GmbH

